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Abstract

The 'Pattern decomposition method’ (PDM) is a new analysis method origi-
nally developed for Landsat TM satellite data. Applying the PDM to the radio-
spectrometer data of ground objects, 121 dimensional data in the wavelength region
of 350 — 2,500 nm were successfully reduced into three-dimensional data. The nearly
continuous spectral reflectance of land cover objects could be decomposed by three
standard spectral patterns with an accuracy of 4.17% per freedom. We introduced a
concept of supplementary spectral patterns for the study of specific ground objects.
As an example, availability of a supplementary spectral pattern that can rectify
standard spectral pattern of vivid vegetation for spectra of withered vegetation was
studied. The new vegetation index (RVIPD) for hyper-multispectra is proposed as a
simple function of the pattern decomposition coefficients including the supplemen-
tary vegetation pattern. It was confirmed that RVIPD is linear to the area cover

ratio and also to the vegetation quantum efficiency.



1 Introduction

Reflecting the progress of technology, some recent satellite sensors can provide hyper-
multispectral data. Several analysis methods have been developed for these data. There
are two well known methods in them. One is the class of principal component transforma-
tion (Gonzalez and Wintz 1977, Merembeck and Turner 1980). The principal component
analysis method is mathematically pleasing, but the new coordinate system has no phys-
ical meaning. The other is spectral mixing analysis (endmembers method) (Adams et.al.
1995). In this analysis, the spectrum of each pixel is approximated as the linear sum of a
spectrum for each classification category. The coefficients of that linear sum express the
'belonging ratios’ of each pixel to those categories.

We have developed a new analysis method for multi-spectral satellite data called the
"Pattern decomposition method’ (PDM) (Fujiwara et.al. 1996, Muramatsu et.al. 2000).
The PDM is one type of spectral mixing analysis but the spectrum of each pixel is basically
expressed as the linear sum of fixed three standard spectral patterns, namely the spectral
patterns of three representative land objects; water, vegetation and soil. In the PDM,
these three patterns have no meaning of special classification category but are standard
spectral pattern components of general spectra. The spectral pattern for most ground
objects can be reconstructed by the three standard patterns. The usage of standard
spectral patterns makes possible the comparison of data from different time and also from
different sensors with the same criteria (Hayashi et.al. 1998).

According to the application of the PDM to Landsat TM data and simulated ADEOS-
IT GLI data, it can be said that reflected light from most land cover objects can be ap-
proximated with a linear combination of the three standard patterns of water, vegetation
and soil with good accuracy (Hayashi et.al. 1998, Furumi et.al. 1998). Especially in
hyper-multispectral data analysis, data reduction without losing any information is im-
portant. In a sense, the standard patterns in the PDM are one kind of three principal axes
in n-dimensional space but have physical meaning. To make it possible, the PDM adopts
a oblique coordinate system. The three standard patterns are the axes of the coordinate
system.

In general, spectral patterns of ground objects as a function of wavelength are decom-



posed into a smoothly varying component and a resonance component.
spectral pattern = (smooth component) + (resonant absorption component) (1)

For example, spectral patterns of water, soil and concrete vary smoothly as a function of
wavelength. Spectral patterns of vegetation and mineral have a smooth component and
a broad resonant absorption component.

To express a resonant part well, a supplementary spectral pattern in addition to the
three-spectral pattern is available. For example, a characteristic absorption pattern for
minerals could be used as a supplementary pattern. In the case of vegetation, the sharp
resonant absorption part of the spectrum smooths on progress from a vivid vegetation
state to a withered state, and finally shows like a soil spectral pattern. A supplementary
pattern which rectifies resonant absorption pattern of vivid standard vegetation is useful
for the detailed analysis of vegetation change.

In this paper, the applicability of the PDM to nearly continuous spectrum data is
studied and the PDM included a supplementary spectral pattern for withered vegetation
is developed. For this study, we used radio-spectrometer data measured in the field and

data measured with an airborne multispectral scanner.

2 The pattern decomposition method

2.1 PDM with three standard spectral patterns

In the PDM, a set of reflectance (or brightness) data of n-bands for each pixel is used. As
mentioned above, the spectral patterns of water, and soil are smooth varying patterns.
The spectral pattern of vegetation has a smooth part and a broad resonant absorption
part. The set of data for each pixel is decomposed by standard spectral patterns of water,

vegetation and soil as follows:
A(i) - CwPw(i) + CvPu(i) + CsPs(i) , (2)

where A(i) is the reflectance of band i, Pw(i), Pv(i) and Ps(i) are standard spectral
patterns of water, vegetation and soil and normalized as Y, |Pk(i)| = 1, (k = w,v, s) and
Cw, Cv and Cs are pattern decomposition coefficients. The three coefficients Cw, Cv

and C's are evaluated using the least squares method.



The sum of A(7) for all bands is approximated as
Y A@) =Cw+Cv+Cs. (3)

When brightness data are used as A(i), the sum of the three coefficients is total brightness

of the pixel. In the case of the sum of the three coefficients being normalized to unit;
Cw+Cv+Cs=1 (4)

each coefficient represents the ratio of spectral patterns of three components. In this case,
the coefficients for the pixel are not affected by the shadow in the satellite image.

Using the residual of ¢ band’s reflectance,
R(i) = A(i) — {CwPw(i) + CvPu(i) + CsPs(i)} , (5)
the error index of reduced-x? for equation (2) is defined as follows:

¥ =3 R/ (n—3), (6)

where n — 3 is the degree of freedom for a data set of n-bands.

2.2 PDM with a supplementary spectral pattern in addition to

three standard patterns

A supplementary pattern is available for special study such as detailed analysis of
vegetation change or analysis of minerals which includes a resonance absorption spectral
pattern. In this section, PDM with a supplementary pattern in addition to three standard
patterns is discussed for detailed analysis of the vegetation change from vivid state to dead
state as an example.

R(i) data set of equation (5) for dead leaves is used as a supplementary spectral
pattern Pd(i). The decomposition coefficients Cw, Cv, Cs and the coefficient for the

supplementary pattern C'd are evaluated using the least squares method.
A1) — CwPw(i) + CvPu(i) + CsPs(i) + CdPd(i) , (7)

where Pd(i) is normalized as Y°; |Pd(i)] = 1. Even in this case, equation (3) is right,

because Pd(i) is the residuals of dead leaves and >, Pd(i) is equal to zero.



The revised residual of 7 band’s reflectance is as follows;
R(i) = A(i) — {CwPw(i) + CvPu(i) + CsPs(i) + CdPd(i)} . (8)

The reduced-x? in this case is defined as follows

X* =3 R()/(n—4) . (9)

2.3 Information Transfer

To study information transfer from original data to transformed coefficients by the

PDM, the information defined by Shannon in bit unit

— > p(i) logy{p(i)} (10)

was used, where p(7) is the probability of event i. For satellite data, pi(z) is probability

of frequency distribution of reflectance = for band k.

3 Data used in this study and three standard & sup-
plementary spectral patterns

Reflectance was measured in the field with the radio-spectrometer of Field Spec FR
(Analytical Spectral Devices Inc.) or MSR7000 (Opto Research Corp.). Both radio-
spectrometers give raw spectral values every 1 nm from wavelength of 350 nm to 2,500
nm with a spectral resolution of 3 nm to 10 nm. However, many satellites’ sensors have
resolutions of about 10 nm. Therefore we averaged every 10 data points to simulate 10
nm resolution data in the analysis. This procedure also makes our results not to sensitive
to the performance difference of two radio-spectrometers.

The samples were measured indoors using a halogen lamp or outdoors with solar
light. The distances between the receptor and samples were about 50 cm. Due to the
usage of solar light, the spectral region used for this analysis was restricted to where the
atmospheric transmittance was higher than 80%. After measuring spectra for a sample
and a standard white board (Spectralon Reflectance Target of Labsphere Inc.) one by
one, a reflectance for the sample was calculated as a ratio of the raw spectral value of the

sample to that of the standard white board.



In all, 121 bands with 10 nm width were selected as shown in figure 1 with three
standard reflectance spectra as examples. The number of samples for this analysis was
1068.

Airborne multispectral scanner (AMSS) data of Sakata, Japan were also used for this
study. The AMSS was developed for the ADEOS-II/GLI project. The ground resolution
of AMSS is 5m. The characteristics of the bands used in this analysis are shown in table
1. Only Rayleigh scattering are subtracted as atmospheric correction. It is the same
correction method applied in the analysis of TM and MSS data (Fujiwara et.al. 1996,
Muramatsu et.al. 2000).

The normalized standard spectrum patterns of water, vegetation and soil are shown
in figure 2. The samples for the standard spectrum patterns are the sea at Kata port,
Wakayama in Japan, ten overlapped green leaves of Quecus glauca and dry desert sand
near Dunhuang in China, respectively.

The normalized supplementary pattern Pd(i) in equation (7) is obtained from the
residual R(i) of equation (5) for dead leaves of Cinnamomum camphora gatherd at the

ground of Nara Women’s University on April 19th, 1997 and shown in figure 3.

4 Reproducibility of observed spectra and informa-

tion transfer with PDM

4.1 Reproducibility of observed spectra with PDM and y?

The typical examples for pattern decomposition coefficients and residuals are shown in
figure 4. These examples were arbitrarily selected. The green leaves have large C'v values
and small C's values. On the other hand, the dead leaf has small C'v value and large C's
value. Amplitudes of the original band data are almost exactly expressed by the three
coefficients and the residuals are very small.

The original reflectance spectra and the reconstructed reflectance spectra of 121 bands
from the three standard pattern decomposition coefficients and from the supplementary
coefficient in addition to the three coefficients are shown in figure 5. These leaf samples

were arbitrarily selected to display the discolour process from green to broun. The spec-



trum for yellow-brown and dead leaves reconstructed with the additional supplementary
coefficient is reproduced well in comparison with the spectrum reconstructed with only
three coefficients. The supplementary spectral pattern, which is the rectified resonant
absorption pattern of vivid standard vegetation pattern, was useful for detailed analysis
of the vegetation change from vivid state to withered state.

The frequency distribution of x? defined by equation (6) for all samples of 1068 is shown
in figure 6 and the average value is 0.00174 for PDM with three standard patterns. The
square root of 0.00174 is 0.0417 (4.17 %) and is the fitting error per degree of freedom. The
continuous spectral response patterns could be decomposed using only the three standard
patterns with 4.17 % error per degree of freedom. For the PDM with the supplementary
coefficient, the average x? value was a little smaller than the value for the PDM with the

three standard patterns.

4.2 Information transfer for the PDM with three standard pat-

terns

We applied the principal component transformation method using a correlation matrix
to about 600 samples measured on the ground. In the following analysis, we compare two
kind of subspace in the 121 dimensional space. Both subspace have dimension of 3. One
is constructed from the first three principal axes obtained by the principal component
transformation. The other is constructed from the three standard patterns of the PDM.
To avoid confusion, we give the names as ”principal subspace” and "PDM subspace”
respectively.

We calculated contribution rates of principal axes in the principal component trans-
formation method. The results are shown in table 2 for the first 5 principal axes. The
cumulative contribution rate for first three principal axes is 94.9 %.

The contribution rate contained in the PDM subspace was also calculated. It’s value
is 92.2%. This value is a little bit lower than that of the principal subspace. However
each standard spectrum pattern of the PDM subspace has a meaning individually unlike
the three principal axes of the principal subspace.

We have checked the positional relation of the two subspaces next. The projected

lengths of three standard unit vectors into the principal subspace were 0.938, 0.994 and



0.993 for water, vegetation and soil, respectively.

Therefore we can conclude that the PDM subspace is close to the principal subspace,
and both subspaces contain most information of image data of ground objects.

Using equation (10), the information included in the original reflectance data and the
three PDM coeflicients were evaluated. As a result, 95.5 % of the information in the
original data could be transformed into three decomposition coefficients. The PDM is

thus available for data reduction of hyper-multispectral data.

4.3 Reproducibility of NDVI

The traditional vegetation index NDVI uses only information of reflectance for red and
near infrared wavelengths. The reproducibility of NDVI thus depends on the reproducibil-
ity of only these two bands. Figure 7 shows the relationsip between NDVT calculated from
the reconstructed spectrum for PDM with the supplementary pattern and NDVI calcu-
lated from the original observed spectra for field measurement data and AMSS data except

water. The reproducibility was good, especially for the AMSS data.

5 Relationship between y? and band number

Next, we studied the relationship between the band number and y? for the PDM with
three standard patterns. For this study, several data sets with different numbers of bands
were selected from the data of 1069 samples observed on the ground with 121 bands. We
picked up one band from every 2 bands, every 4 bands, every 8 bands and so on. For
example, 1 band was picked up from every 2 bands and two data sets were made from
the data with 121 bands. 75 data sets were prepared in total. We also made simulated
TM and ADEOS-I1/GLI data sets which had 6 and 18 bands, respectively.

Figure 8 shows the correlation between the y2_; and the band number n. The x2 .
decreased according to the increase in band number n and converged to a constant value
of 0.00174 for n larger than 15. The square root of 0.00174 is 0.0417 (4.17 %) and is the
fitting error per degree of freedom. Therefore, in the PDM, the spectral reflectance for
band numbers greater than 15 can be fitted within the error of 4.17 % at all measured

points using only the three standard patterns. It was concluded as a general rule that



land cover objects could be decomposed by the three standard spectral patterns.

6 New vegetation index and It’s availability

6.1 New vegetation index for hyper-multispectral data

A new vegetation index VIPD based on the PDM with three standard patterns has been
proposed by A. Hayashi (Hayashi et.al. 1998) and S. FURUMI (Furumi et.al. 1998). The
VIPD is a linear function of three pattern decomposition coefficients. Revised VIPD
(RVIPD) based on the PDM with the supplementary pattern in addition to the three

standard patterns is given by the following simple formula;
RVIPD = (Cv—Cd)/(Cw+ Cuv+Cs) . (11)

Owing to minimized shadow effects, this formula is normalized with total reflectance or
total brightness. The NDVT is a function of reflectance of two wavelengths, namely red
and near infrared. On the other hand, the VIPD and RVIPD are functions of all observed
wavelengths and sensitive to vegetation state even if the pixel is mixed.

In figure 9, the relationship between NDVI and RVIPD is shown. The NDVI is sat-
urated above 0.8 as a function of RVIPD. This means that the one state in NDVT corre-
sponds to a different state in RVIPD.

6.2 Relationship between RVIPD and Area Cover Ratio

The same data of reflectance and area cover ratio measured in the laboratory using
green leaves and soil by Hayashi et.al. (Hayashi et.al. 1998) were used. Here the area
cover ratio means purely geometrical one. The details of the measurement is described in
the reference.

The relationships between two vegetation indices and area cover ratio are shown in
figure 10. The horizontal axis shows the area cover ratio and the vertical axis shows the
vegetation index obtained from measured reflectance. The dotted lines are quadratic
curves fitted by the least squares method. The first and third terms of RVIPD are
negligibly small. Meanwhile, these terms of NDVI are not so small. Linear relation

between RVIPD and area cover ratio was confirmed.



6.3 Relationship between RVIPD and Quantum Efficiency

The same data of reflectance and chlorophyll for many kinds and many statuses of
leaves used by Furumi et.al. (Furumi et.al. 1998) were used to obtain the relationships
between two vegetation indices and chlorophyll content. The chlorophyll content of leaves
3 — 5g in weight was extracted using acetone and MgCOQOj3, and measured its density
by an absorptiometer (the Arnon method (Yoshimura et.al. 1994)). The details of the
measurement are described by Yoshimura et.al. (Yoshimura et.al. 1994) and Furumi et.al.
(Furumi et.al. 1998). The results are shown in figure 11. Using the relationship between
chlorophyll and quantum efficiency (figure 12) (Gabrielsen 1948), relationships between
vegetation indices and quantum efficiency were obtained as shown in figure 13. It was

confirmed that the RVIPD and NDVI are both linear to quantum efficiency.

7 Summary

We studied the applicability of the Pattern Decomposition Method (PDM) to a set of
nearly continuous spectral reflectance data in the wavelength range from 350 nm to 2,500
nm. 121 bands were selected where the atmospheric absorption was less than 20%. For all
1068 samples measured in the field, spectral response patterns could bhe decomposed using
only three standard spectral patterns with about a 4.17 % error per degree of freedom.
It was understood as a general rule that land cover objects can be decomposed by three
standard spectral patterns, namely water, vegetation and soil.

The information included in the original reflectance data and the three PDM coeffi-
cients were evaluated and it was confirmed that 95.5 % of the information in the original
data can be transformed into three decomposition coefficients. The PDM is available for
data reduction of hyper-multispectral data.

The relationship between the band number and 2 for the PDM with three standard
patterns showed that y? is decreased with increasing band number and converged to a
constant value of 0.00174 above a band number of 15. The value of 0.00174 corresponds
to 0.0417 (4.17 %), the fitting error per degree of freedom.

For detailed analysis of the vegetation change from vivid state to withered state, a

supplementary spectral patterns in addition to the three standard patterns are available.



The new vegetation index RVIPD is proposed as a simple function of the four pattern
decomposition coefficients which are linear to the original data of reflectance or brightness.
It was confirmed that the RVIPD is linear to the vegetation cover ration and quantum
efficiencies.

The PDM is applicable to any optical sensors with several bands in the same frame-
work. We have opened the three standard patterns and the supplementary pattern to the
public on the World Wide Web.
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Table 1. AMSS spectral bands and the band number defined in this study.

Record Central Band | Band Number

Sequence | Wavelength | Width Defined

of AMSS (nm) (nm) | in This Study
rl 405.3 5.5 1
r2 412.6 9.9 2
5 442.3 9 3
r7 463.2 8.8 4
rl0 489.6 8.9 5
r12 5922.8 9.2 6
rl5 545.4 9 7
rl7 561.3 7.8 8
20 627.3 10 9
28 668.1 9.3 10
23 675.7 8.9 11
r29 683.4 10.3 12
r27 750 9.4 13
r31 784.2 13.4
r32 800.9 12.6 14
r33 829.4 13.6 | (average from
r34 848.1 20.6 r31 to r35)
r35 866 15.5
r38 1050.8 16.1 15
r39 1239.8 20.5 16
r40 1631.8 217.5 17
r41 2233 198.3 18
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Table 2. The cumulative contribution rate of the principal components.

the number of axis || principal value | cumulative rate

1 77.97 0.6444
2 24.77 0.8491
3 12.05 0.9486
4 2.05 0.9656
bt 1.32 0.9765
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