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Alstract. The pattem decomposition method (PDM) is a type of spectral mixing analysis in which each pixel is expressed as
the linear sum of fixed, standard spectral pattems for water; vegetation, and soil, with supplementary pattems included when
necessary. For each sensor; these standard pattems are calculated from the same original reflectance spectra. The PDM
framework can be applied to any opticalty sensed data. In this method, however, the nommalization of standard spectral pattems
depends on how many bands and which wavelengths the sensor observes. As a result, the obtained pattem decomposition
coefficients may differ for each sensor; even when the same samiple object is observed. This paper describes a modified PDM
with a supplementary pattem; the developed sensor-independent method uses the same nommalized spectral pattems for any
sensor: Fixed multiband (1,260 bands) spectra served as the universal standard spectral pattems. The resulting pattem
decomposition coefficients showed sensor independence. That is, regardless of sensor; the three coefficients had nearly the
same values for the same samples. The estimation errors for pattem decomposition coefficients depended on the sensor used.
The estimation errors for LandsatMSS and ALOS/AVNIR-2 were larger than those of Landsat/ TM (ETMH), TeraMODIS,
and ADEOSHI/GLI. The latter three sensors had negligibly small errors.

1. Introduction

Satellite remote sensing is important for land cover research and estimating global net primary production
(NPP). Numerous satellite sensors collect measurements for land analysis. Recent satellite sensors, such as
Terra/MODIS and ADEOS-II/GLI, provide hyper-multispectral data. However, analysis results depend on sensor
performance and are especially affected by the number of bands and wavelengths observed. Consequently, it is
difficult to compare analysis results obtained using data from different satellite sensors.



We sought to develop a sensor-independent analysis method. Sensor independence means that analysis results
for the same sample should be the same or nearly the same, regardless of the sensor used. Most analysis methods
are sensor dependent. For example, although the principal component transformation (PCT) method can be
applied to data obtained from any type of optical sensor; the results differ depending on the sensor type, so PCT isa
sensor-dependent method.

The pattem decomposition method (PDM) uses multispectral data effectively (Fujiwara et al, 1996;
Muramatsu et al., 2000; Daigo ef al., 2003). The PDM is a type of spectral mixing analysis (Adams ef al., 1995),
which expresses the spectrum of each pixel as the linear sum of three fixed, standard spectral pattems (i.e., the
pattems of water, vegetation, and soil). For each sensor, these standard pattems are calculated from the same original
reflectance spectra. This framework can be used to apply the PDM to data obtained from any optical sensor:
However, the resulting pattern decomposition coeflicients may differ by sensor;, even for the same sample object.
Normalization methods account for these differences. The PDM has sensor-independent characteristics and can be
made sensor-independent with a well-designed definition. Therefore, we developed a modified PDM for sensor-
independent analysis. This method, referred to as the universal PDM (UPDM), uses the same normalization
method for all sensors. In this method, the standard pattems are extracted from ground-measured common spectra.
The UPDM can be applied to any sensor, and the results obtained from various sensors are almost the same for the

same sample.

On average, 95.5% of landcover spectral reflectance information can be transformed into the three
decomposition coefficients and decomposed into the three standard pattems with about 4.2% error per degree of
freedom (Daigo ef al., 2003). However, some objects, such as yellow leaves, have slightly larger decomposition
errors. Depending on the research purpose, supplementary standard pattems can be applied. For example, to study
vegetation changes in more detail, an additional supplementary spectral pattem can be added to reproduce the
spectral reflectance. In this study, a yellow-leaf pattern was used as a supplementary spectral pattem.

To study sensor independence using the UPDM, we analyzed about 600 ground-measured samples, including
green-leaf; yellow-leaf, dead-leaf; soil, water, and concrete samples etc.. We made simulated data of Landsat/MSS,
ALOS/AVNIR-2, Landsat ETM+, Terra/MODIS, and ADEOS-II/GLI sensors using ground-measured data, and
compared the analyses results of these data. In this paper, we describe the UPDM and simulated results
representing several sensors.

2. The pattern decomposition method
2.1. Review of the conventional pattern decomposition method

In the conventional PDM, the reflectance (or brightness) data for each observed pixel are decomposed into the
standard spectral pattermns of water, vegetation, and soil using the following formula (Daigo et al., 2003):



Ri_)cw'ljiw—l—cv'])iv%_cs‘])is’ (1)
where R, is the reflectance of band i measured on the ground (or by satellite sensor), C,, C,, and C; are the
respective decomposition coefficients, and P, , P, , and P, are the normalized standard spectral patterns of
water, vegetation, and soil, which relate to the properties of each sensor. The fitted reflectance value is given by

R;:CW.RW—FCV.E\/*_CS.PE’ (2)
where the residual of the band i reflectance is defined by

=R —R. (3)

The pattern decomposition coefficients obtained using equation (1) are evaluated using the least squares method.
‘When the PDM is used for spectral mixing analysis, a non-negative constraint is put on the coeflicients:

Cc,>0, C, >0, C, >0 @
The standard spectral pattems are normalized as

ZN]Pk =1 (k=wv,s). (5)

Here, N is the number of sensor bands used. If necessary for more detailed analysis, a supplementary standard
spectral pattem can be added.

According to equation (5), the standard pattems depend on the band wavelengths detected and the number of
bands used, although the same continuous spectra serve as the standard spectra. As a result, the pattem
decomposition coeflicient values for the same object depend on the sensor (z.e., the values are sensor dependent).

2.2. The universal pattern decomposition method
2.2.1. The universal patter decomposition method with three components

In response to PDM shortcomings, we developed a universal PDM (UPDM). In the UPDM, we define each
standard spectral pattem as a continuous spectral function from 350 to 2,500 nm. The other equations remain the
same as in the conventional PDM. Instead of equation (5), however; standard pattem normalizations are defined as

follows:

ﬂPk (A)dA = j di (k=w,v,s), (6)

where the discrete band number i in equation (5) is changed into contmuous wavelength A, I dA refers to

integration of the total wavelength range, and P, (1) isdefined as
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where R, (A4) represents the spectral reflectance patterns of standard objects. The shapes and magnitudes of the
standard pattems P, (1) are fixed forall sensors.
For each sensor band, we intercepted £, (A4) values. Thus, the standard pattems for each sensor are defined by

IRARZ
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where A, and A, are the start and end wavelengths for band i, respectively, and _[ j d ] is the wavelength width

of band i. The decomposition coeflicients C; were obtained for each sensor by the least squares method using
equation (1). In principle, nearty equal values should result for the same object; furthermore, coefficient precision is
expected to improve as the number of bands increases.

The remaining decomposition coefficient calculation procedures are the same as in the conventional PDM.
However, the non-negative constraint put on coeficients in the conventional PDM is removed in the UPDM. The
PDM can be explained using two analysis methods: spectral mixing analysis and multi-dimensional analysis. If we
think of the PDM as multi-dimensional analysis, standard pattems are interpreted as an oblique coordinate system,
and coefficients are thought of as the coordinates of a pixel’s reflectance. In this case, non-negative constraints are
inappropriate. We think this interpretation is more general than traditional interpretations. If an application requires
non-negative constraints, the UPDM is also compatible with the non-negative constraints.

Ifwe compute an integral of the entire band, we can obtain equation (9) from equation (1), as follows:
C, [ P.()di+C,[P(A)dA+C, [P (A)di=[R(A)dA. (9)

Considering equation (6), equation (9) can be transformed into

B j R(A)dA

C,+C,+C, = (10)
Kz

In principle, nearly the same values should result from measurements of the same object, regardless of sensor type.
Thereduced y* is defined as follows:
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where 7 refers to the total number of bands for a sensor; 3 is the number of coefficients, and (7 — 3) represents the
degrees of freedom for a dataset of 7 bands.

2.22. The Universal pattern decomposition method with four components
As mentioned above, a supplementary yellow-leaf spectral pattemn was used for detailed analysis of vegetation
changes. Consequently, the general equation of universal PDM was changed to

Ri_)Clv.BW+Cv.Piv+Cs'ES+C4'B4’ (12)

where C, represents the supplementary coefficients of a yellow leaf, and P, is the supplementary standard pattem
for i bands (i is the number of bands for the sensor), which is intercepted from 2, (A1) . The yellow-leaf spectrum
and three components were used to define P, (4) as follows:

=Ty (13)

where 7, (A) istheresidual yellow-leaf value relative to i bands:
r,(A) =R, (A1) {C,P,(A)+ C,P(1)+ C.P(A)}. (14)

Here, R, (1) is the measured value for the yellow-leaf sample, and 7, (1) is the residual value. For any sensor, Py
values were calculated with equation (8). The reduced > were calculated using

n

=) (n-4), (15)

i=1

where 7 equals the number of bands.

3. Data used in this analysis
3.1. Standard spectral patterns

Consistent with the conventional PDM, we used the same water, vegetation, and soil standard spectral pattems.
In the UPDM, however, we converted an uninterrupted spectral wavelength range from 350 to 2,500 nm,
excluding regions of strong atmospheric absorption. Therefore, the total number of bands equaled 1,260. Sample
data were measured outdoors under solar light or indoors under a halogen lamp with a Field Spec FR (Analytical
Spectral Devices, Inc.) or MSR7000 (Opto Research Corp.) radio-spectrometer. Both radio-spectrometers give
raw spectral values for every 1 nm in wavelength from 350 to 2,500 nm and have a spectral resolution from 3 to 10



nm. The samples used to define standard spectral pattems were the same as the reference (Daigo ez al., 2003). Table
3.1 shows the wavelength regions used to obtain the standard spectral pattems. The spectral region used had
atmospheric transmittance greater than 80%. Figure 3.1 shows the wavelengths selected from the original standard

reflectance values for water, vegetation, and soil.

Table 3.1. Wavelength regions used in this analysis

No Wavelength/nm
1 371.0~9000
2 991.0~11000
3 1191.0~13000
4 1521.0~17500
5 2081.0~2360.0
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Figure 3.1. Wavelengths selected in this analysis. The figure shows the original measured reflectance values for the
three standard pattems (water, vegetation, and soil).

In this analysis, we selected a yellow-leaf sample to serve as the supplementary spectral pattem. Using a yellow
leaf rectifies problems associated with the withered-vegetation pattem. Dead-leaf samples are remarkably similar to
soil and are therefore not suitable as a supplementary spectral pattem. Figure 3.2 shows the new normalized
standard spectral pattems of water (blue x), vegetation (green x), soil (red +), and the yellow-leaf supplement

(purple O).



3.2. Sensors and sample data used for this analysis

The sensors simulated in this analysis were MSS, ALOS, ETM+, MODIS, and GLI The virtual sensors
MODEL and CONTINUE were also used. Bands in which output signals from the actual sensor (i.e., MODIS &
GLI) were saturated on land areas were removed. In the wavelength region above 2,000 nm, the ground-measured
data was poor in quality. Therefore, these data were also removed. For each band of each sensor, average
reflectance values were obtained from ground-measured data within the wavelength widths of each band. Table 3.2
lists the bands used in this analysis. The model sensor CONTINUE has 92 bands with wavelengths ranging from
371 to 1,750 nm (table 3.1) and a bandwidth of 10 nm.
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Figure 3.2. Nommalized standard pattems of soil, water, vegetation, and the supplementary pattem. This figure shows the nommalized
values of the standard spectral pattems of water, vegetation, and soil given in figure 3.1; the supplementary standard pattem
represents a yellow leaf.



Table 3.2. Spectral bands used in this analysis

No MSShm ALOS/hm ETM+hm MODIS/iim GLI/nm MODEL/im
1 5000~ 6000 4200~5000 4500~ 5190 4590~ 4790 3750~ 3850 3850~ 4250
2 6000~ 7000 5200~6000 5200~ 6000 5450~ 5650 4550~ 4650 4550~ 4650
3 7000~ 800.0 6100~6900 6300~ 6900 6200~ 6700 5400~ 5500 5400~ 5500
4 800.0~1,1000 760.0~89%0.0 760.0~ 9000 8410~ 8760 673.0~ 6830 6730~ 6830
5 1,5500~1,7500 1,2300~12500 7050~ 7150 7050~ 7150
6 2,080.0~23500 1,6280~1,6520 7590~ 7670 7590~ 7670
7 2,1050~2,1550 8550~ 8750 8550~ 8750
8 1,040.0~1,0600 991.0~1,0100
9 1,2300~1,2500 1,040.0~1,0600

10 1,5400~1,7400 1,2000~12500
11 2,1000~23200 1,540.0~1,6400
12 1,6500~1,7400
13 2,1000~23200




4. Results of the universal PDM
4.1. Reproducibility of the observed spectra with universal PDM and reduced y*

Figure 4.1 shows the reflectance spectra of 92 bands and the reconstructed spectra calculated from the pattern
decomposition coeflicients obtained for various sensors. In the figure, red thombuses show the 92 bands of the
ground-measured CONTINUE data. The blue broken line, green broken line, and purple crosses represent
reconstructed spectra for the ALOS, GLI, and CONTINUE sensors, respectively. The original spectra are
reproduced well, except those from ALOS. The reconstructed spectra for ETM+, MODIS, and MODEL are
almost the same as the spectra for GLI and CONTINUE. For the ALOS sensor, the data points corresponding to
the ALOS band wavelengths (499.5 ~ 1,100.5 nm) are reproduced exactly. However, above wavelengths of 1,000
nm, the reproduced values differ from the original data.

Since we have four fitting parameters, C, , C,, C, ,and C, , the reflectance values at each band wavelength
for the four-band sensors (MSS and ALOS) were reproduced exactly. The reduced > could not be calculated.
Here, we compare the reconstructed spectrum of the 92 bands for each sensor with ground-measured
CONTINUE data. Figure 4.2 shows the results of the reduced y > calculated for the 92 bands. Approximately
600 samples were used. The values decrease as the band number increases and converge at 0.00066 for band
numbers larger than five (TM). Table 4.3 lists the average values of the reduced y* for each sensor. The square
root of 0.00062 1s 0.025 (2.5%), which is the fitting error per degree of freedom.
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B} Yallow Laaf Sample
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Figure 4.1. Orginal reflectance and reconstructed reflectance spectra. A) Typical vegetation
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sample, B) Yellow leaf sample, C) Typical soil sample, D) Water sand mixed sample.
Table4.1. Average values and root mean squares (ms) of the reduced y ?

Sensor MSS ALOS ETM+ MODIS GLI MODEL  CONTINUE
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Figure42. Reduced > forreconstructed spectra
4.2. Correlation of pattern decomposition coefficients
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Figure 44. Correlation of the universal pattem decomposition coefficients. A) ETM sensor and CONTINUE
sensor, B) MODIS sensor and CONTINUE sensor;, C) GLI sensor and CONTINUE sensor, D)
MODEL sensor and CONTINUE sensor,

Figure 4.4 shows the correlation of the UPDM coeflicients obtained using the universal pattem decomposition
method. The horizontal-axis shows the UPDM coeficients for the CONTINUE sensor;, and the vertical-axis
shows the ETM , MODIS, GLI, or MODEL sensor coefficients. As expected, the coefficients obtained for each
sensor nearly equal the coefficients obtained from the CONTINUE sensor. Table 4.2 lists the linear regression
coefficients of f(x) = a,x (i =1,2,3,4) for correlating the UPDM coefficients of each sensor, and the root
mean square (ms) of the residuals of coefficient Gy (k= w, v, s, 4). Total values were obtained from all UPDM
coefficients by linear regression. The coefficients of a; were nearly 1 for all sensors, and the rms values were very
small compared with the coefficient values. This means that the UPDM coefficients are sensor-independent.
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Table4.2. Coeflicients of the linear regression function and the root mean square (ms) values of the residuals

GLI ETM+ MODIS MODEL
a, ms a, ms a, ms a, ms
C, 10122 0.0047 09615 0.0036 1.0390 0.0045 10125 00038
C, 1.0032 0.0073 09801 00114 1.0009 0.0059 1.0087 0.0048
C, 1.0083 00112 1.0057 00074 1.0105 00115 09969 0.0061
C, 09925 0.0052 0.9980 00057 1.0077 0.0046 09735 0.0042

total 1.0070 0.0075 09992 00077 1.0087 0.0073 09995 0.0049

5. Summary and conclusions

We developed a universal pattem decomposition method (UPDM) to obtain sensor-independent pattemn
decomposition coefticients for reflectance data in the 371 to 1,750 nm wavelength range. For this, we analyzed
about 600 ground-measured samples, including greenHeaf, yellow-leaf, dead-leaf, soil, water, and concrete
samples. A supplementary spectral pattern was used to counteract the influence of withering vegetation. The
standard spectral patterns of water, vegetation, soil, and the supplementary pattern were normalized for the entire
spectral band from 350 to 2,500 nm, excluding the region of strong vapor absorption. The total number of bands
was 1,260 with 1-nm spacing.

We verified that the pattem decomposition coefficients obtained using the UPDM are nearly sensor
independent. That is, each sensor showed nearly the same coefficient values within 0.77% of the mms. Exceptions
were four-band sensors, such as MSS and ALOS. The reduced > values for Landsa/ETMH, Terra/MODIS,
and ADEOSHI/GLI were around 0.00070. The square root of 0.00070 is 0.026 (2.6%). Using this method, we can
analyze satellite data independent of the sensor used and compare the results of analyses directly, using
multispectral data effectively.

To further validate this UPDM, we will apply data observed over Wuhan, China, and the Kii Peninsula,
Japan with the ETM+, MODIS, and GLI satellites. We will define a sensor-independent vegetation index as a
linear function of the UPDM coefficient and will study sensor-independent ground classifications and NPP
estimation in future research.
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