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Abstract.  This study examined a new vegetation index, based on the universal pattern decomposition method 

(VIUPD). The universal pattern decomposition method (UPDM) allows for sensor-independent spectral analysis. 

Each pixel is expressed as the linear sum of standard spectral patterns for water, vegetation, and soil, with 

supplementary patterns included when necessary. Pattern decomposition coefficients for each pixel contain almost 

all the sensor-derived information, while having the benefit of sensor independence. The VIUPD is expressed as a 

linear sum of the pattern decomposition coefficients; thus, the VIUPD is a sensor-independent index. Here, the 

VIUPD was used to examine vegetation amounts and degree of terrestrial vegetation vigor; VIUPD results were 

compared with results by the normalized difference vegetation index (NDVI), an enhanced vegetation index (EVI), 

and a conventional vegetation index based on pattern decomposition (VIPD). The results showed that the VIUPD 

reflects vegetation and vegetation activity more sensitively than the NDVI and EVI. 

 

1.  Introduction 

Researchers have used vegetation indices (VIs) to quantify green-leaf vegetation and to monitor major vegetation 

fluctuations and associated environmental effects. Studies involving land-cover classifications, environmental monitoring, and 

deforestation, desertification, or drought brought on by climate change, have employed vegetation indices. Various vegetation 

indices have been developed for specific research objectives. 

Vegetation indices (VI) are spectral transformations of two or more bands designed to enhance vegetation properties and 

allow for reliable representations of photosynthetic activity and structural canopy variations (Huete et al., 2002). A commonly 

used index is the normalized difference vegetation index (NDVI), given as follows: 
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The NDVI is an important component of local, regional, and global vegetation change studies; however, it uses only red and 

near infrared reflectance data (Nemani et al., 1993). The enhanced vegetation index (EVI) uses the red and near infrared bands, 

and also includes blue-band reflectance data to correct for aerosol influences in the red band, and some other aerosol resistance 
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coefficients (Huete et al., 2002). The EVI is given as follows: 
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where ρ  values are atmospherically corrected or partially atmospherically corrected (e.g., for Rayleigh and ozone absorption) 

surface reflectances; L is the canopy with background adjustment addressing nonlinear, differential near infrared- and red-band 

radiant transfer through the canopy; and 21 ,CC  are aerosol resistance coefficients that use the blue band to correct for red-band 

aerosol influences. The coefficients of the EVI algorithm are ,1=L  ,61 =C  ,5.72 =C  and 5.2=G , where G is the 

gain factor (Huete et al., 1994, 1997). 

The above methods use either two or three satellite-observed wavelength bands, or require some additional coefficient 

inputs. We developed a new vegetation index based on the pattern decomposition method (VIPD; Hayashi et al., 1998). The 

pattern decomposition method (PDM) is a type of spectral mixing analysis (Adams et al., 1995) in which each pixel is 

expressed as the linear sum of fixed standard spectral patterns for water, vegetation, and soil: 
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where Cw, Cv, Cs are coefficients for water, vegetation, and soil, respectively; Sv, Ss represent the total reduced albedo value of 

vegetation and soil, respectively; and Ai refers to the reduced albedo value of band i. 

Our analyses showed that the VIPD is more sensitive than the NDVI for determining the vegetation cover ratio, vertical 

vegetation thickness, and vegetation type (e.g., broad leaf or needle leaf) when using Global Imager (GLI) data. However, since 

the PDM has sensor-dependent parameters, and the constant values of Sv and Ss are sensor-dependent, it is difficult to directly 

compare results obtained using data from different sensors. 

Thus, we developed a sensor-independent universal pattern decomposition method (UPDM) for hyper-multi-spectral data 

analysis (Zhang et al., 2004). Analysis results demonstrated that the four coefficients (i.e., three standard pattern decomposition 

coefficients and a supplementary coefficient) calculated by the universal pattern decomposition method are sensor independent. 

We have now developed a new vegetation index that is based on the universal pattern decomposition method, which we call 

the VIUPD, and we publish it here for the first time. This vegetation index based on the UPDM has many benefits over the 

conventional VIPD. The VIUPD is defined as a linear sum of the pattern decomposition coefficients but is sensor independent. 

In this paper, we compare how our new vegetation index (VIUPD), the NDVI, the EVI, and the VIPD represent the 

relationships between photosynthesis, the vegetation area ratio, and the number of overlapping leaves. 

 

2.  A vegetation index (VIUPD) based on the UPDM and multi-spectral data 

2.1  The universal pattern decomposition method (UPDM)  

We developed a universal pattern decomposition method (Zhang et al., 2004) in which reflectance (or brightness) data for 

each pixel observed by a sensor are decomposed into standard spectral patterns of water, vegetation, and soil as follows:   
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where )(iR is the reflectance of band i measured on the ground (or by satellite sensor) for any sample (or any pixel), and Cw, Cv, 

and Cs are the decomposition coefficients. 

For some studies, a UPDM with only three components is adequate. However, other studies may require more detailed 

analysis of vegetation change. Thus, we added a yellow-leaf coefficient as a supplementary spectral pattern, changing Equation 

(4) to  

)()()()()( 44 iPCiPCiPCiPCiR ssvvww ⋅+⋅+⋅+⋅→ ,                     (5) 

where 4C represents the supplementary pattern coefficients of a yellow leaf, and )(iPw , )(iPv , )(iPs , and )(4 iP are the 

standard spectral patterns of water, vegetation, soil, and the supplementary yellow-leaf pattern for band i (i represents the sensor 

band numbers), intercepted from )(λkP (k = w, v, s, 4) as follows:   
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where )(λkR  values are the spectral reflectance patterns of standard objects. The shapes and magnitudes of the standard 

patterns )(λkP  are fixed for any sensor. The )(4 λP  value is defined using the yellow-leaf residual and the three components 

as follows:  
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where )(4 λr  is the residual value for a yellow leaf for the i band,  

        { })()()()()( 44 λλλλλ ssvvww PCPCPCRr ++−= ,                         (8) 

)(4 λR is the measured value of the sample yellow leaf, and )(4 λr is the residual value. The standard patterns are normalized 

as follows: 

∫∫ = λλλ ddPk )(   )4,,,( svwk = .                                 (9) 

We intercepted )(λkP  values for each sensor. The four standard patterns for each sensor are defined by  

∫
∫

=
ei

si

ei

si

d

dP
iP

k

k λ

λ

λ

λ

λ

λλ)(
)(  )4,,,( svwk = ,                                 (10) 

where siλ  and eiλ  are the start and end wavelengths of sensor band i, respectively, and ∫
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band i. 

 

2.2 Vegetation index VIUPD for multi-spectral data 

Vegetation indices play an important role in monitoring global surface vegetation change. Ideally, a vegetation index 

should reflect the amount of vegetation and the degree of vegetation vigor. The amount of vegetation can be expressed by the 

biomass or leaf area index (LAI). A vegetation index based on pattern decomposition (VIPD) expresses the linear sum of the 

three pattern decomposition coefficients (Hayashi et al., 1998) and is linear to the vegetation cover ratio (Furumi et al., 1998). 

However, the VIPD has sensor-dependent parameters. We thus developed a new vegetation index that was based on four 

pattern decomposition coefficients (i.e., a supplemental spectral pattern plus the three standard patterns) (Daigo et al., 2004). The 

new vegetation index (or revised VIPD) was normalized by total reflectance or total brightness to minimize shadow effects and 

obtain stable values. However, the index still used conventional pattern decomposition coefficients.  

We have now redefined the vegetation index by producing a vegetation index that is based on a universal pattern 

decomposition method (VIUPD). The index is a function of the linear combination of the pattern decomposition coefficients. 

The formula is given as follows: 
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where ( svw CCC ++ ) represents the sum of total reflectance, and a is the coefficient of standard soil pattern coefficients. The 

Cs term in the numerator is a correction term for dead vegetation, because the spectral pattern for dead vegetation contains a 

small portion of the vegetation pattern. We determined parameter a so that the average VIUPD value for dead vegetation equals 

zero. For standard vegetation, the VIUPD value equals 1. 

As mentioned above, a vegetation index should be sensitive to photosynthesis. Plants transform sunlight to chemical 

energy by photosynthesis. During this process, plants fix carbon dioxide and release oxygen while coping with water loss. 

Photosynthesis measurements are necessary to understand productivity (biomass accumulation) at leaf, plant, or community 

levels, as well as vegetative responses to environmental stresses. Satellite remote sensors can quantify the fraction of 

photosynthetically active radiation (PAR) absorbed by vegetation. Research has found that net photosynthesis directly relates to 

the amount of PAR absorbed by plants. In short, the more visible sunlight a plant absorbs (during the growing season), the more 

the plant photosynthesizes, and the more productive the plant is. Therefore, as a leaf turns from green to brown (i.e., as the leaf 

dies) photosynthesis decreases until finally reaching zero. In response, CO2 absorption also decreases to zero.  

    

3.  Data used in this study 

3.1.  Reflectance data  

Sample reflectance data used in this analysis were measured outdoors under solar light or indoors under a halogen lamp 

with a Field Spec FR (Analytical Spectral Devices, Inc.) or MSR7000 (Opto Research Corp.) radio-spectrometer. Both radio-

spectrometers give raw spectral values every 1 nm for wavelengths of 350 to 2500 nm. Spectral resolution ranges from 3 to 10 

nm with a 1-degree field of view. After measuring spectra for each sample and for a standard white board, reflectance was 

calculated from the raw spectral digital values of each sample divided by those of the standard white board. We measured about 
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600 samples, including leaves, soil, water, concrete, and a sandy beach. 

3.2.  Photosynthesis data 

We used a LI-6400 photosynthesis open system to measure light photosynthesis. In this system, an air stream with a 

known CO2 concentration is constantly passed through the leaf chamber. The air exiting the chamber will have a lower CO2 

concentration than the air entering the chamber. We recorded changes in CO2 values and the photosynthetic active radiation 

(PAR) using an LED light sensor. The carbon dioxide concentration in the chamber was about 350 ppm to match the 

surrounding air, and the air temperature in the chamber was about 28 degrees Centigrade (Furumi et al., 2004). Figure 3.1 

shows three typical results for absorbed CO2 and reflectance for a green leaf (No. 1), yellow leaf (No. 2), and yellow-green leaf 

(No. 3) of Ginkgo biloba tree. 

 
(a) 

 
(b) 

Figure 3.1. Original reflectance patterns of three typical leaves (a), and the relationship between 
PAR and CO2 absorption (b) 

 
Table 3.1 lists the photosynthesis data used in this study. In this table, the sample leaves that we measured included Ginkgo 

biloba leaves and Magnolia praecocissima leaves, the CO2  absorption values are correspond to  Pmax, which is fitted by the  least 
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square regression using the original measured data; the equation is as follows: 

PARb
PARbP
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1

)( max ,                                                                             (12) 

where PAR represents the photosynthetic active radiation, and Pmax is the maximum photosynthesis in a saturated 

region, b refers to the  parameter that controls the degree of the fitted curve. When PAR tends to ∞, the CO2 absorption 

values are approximately equal to Pmax. 

Table 3.1 Sample leaves for photosynthesis  

Sample  
number Sample attribute 

CO2 absorption
µmol/(m2·s) 

Sample  
number Sample attribute

CO2 absorption 
µmol/(m2·s) 

532 Green leaf 2.05   552 Green leaf 1.62   

534 Yellow leaf -0.17   553 Green leaf 12.58   

536 Yellow green 1.30   554 Green leaf 14.59   

538 Green leaf 3.56   555 Green leaf 12.60   

540 Yellow green 0.82   556 Green leaf 10.47   

542 Yellow leaf -0.22   557 Green leaf 7.69   

544 Yellow leaf -0.28   558 Green leaf 10.78   

546 Green leaf 6.10   596 Green leaf 10.62   

548 Green leaf 4.69   598 Green leaf 10.45   

550 Yellow leaf 1.31      

 

3.2. Other data 

To verify the relationship between the VIs and the actual vegetation situation and activity, we measured reflectance, CO2 

absorption, and some other data, such as vegetation land cover ratios and the number of overlapping leaves.  For the vegetation 

area cover ratio, the leaves that we used were obtained from Cinnamonum camphora trees, and the soil was collected from the 

grounds of Nara Women's University of Japan and dried. We measured the reflectance values with changes in the vegetation 

area cover ratio from 0% to 100%. In addition, we recorded the reflectance of overlapping leaves obtained from Cinnamonum 

camphora trees using 1 to 10 overlapping leaves.  

 

4.  Results and discussion 

4.1.  Determination of VIUPD parameters 

The spectral patterns of dead vegetation resemble soil patterns, but also contain a small amount of the vegetation pattern. 

Parameter a in Formula (11) compensates for the vegetation pattern within the dead vegetation pattern. Parameter a was 

determined so that the average VIUPD value for 46 samples of ground-measured dead leaves was nearly zero, in this case, the 

value of a was 0.10. For this result, Formula (11) is as follows: 
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4.2. Relationship between vegetation indices and the area cover ratio 

A number of previous studies have shown that the VIPD is linear to the vegetation cover ratio (e.g., Furumi et al., 1998). 

Figure 4.1 shows the relationship between various kinds of VI and the vegetation cover ratio for the sample data listed in Table 

3.1. In the figure, diagram A shows the relation between EVI and vegetation cover ratio, with the quadratic line fitted by least 

squares regression using the equation f(x) = ax2 + bx + c; diagrams B, C, and D show relationships for the vegetation cover ratio 

and NDVI, VIPD, and VIUPD, respectively. 

Figure 4.1 shows that the quadratic coefficients of VIPD and VIUPD are smaller than those of EVI and NDVI by one 

order of magnitude. Thus, VIPD and VIUPD have greater linear correlation with the vegetation cover ratio than EVI and 

NDVI.  
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Figure 4.1. Relationships between VIs and the vegetation cover ratio. A) Relationship between the 

vegetation cover ratio and the VIUPD, B) Relationship between vegetation cover ratio and the 
VIPD, C) Relationship between vegetation cover ratio and the EVI, D) Relationship between 
vegetation cover ratio and the NDVI. The solid lines in the figures represent regression results 
by the equation f(x) = ax2 + bx + c. 

 

4.3. Relationship between vegetation indices and gross photosynthetic production 
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Figure 4.2. Relationships between VIs and gross photosynthetic production. (µ mol co2/m2/s). A) 

Relationship between CO2 absorption and the VIUPD, B) Relationship between CO2 
absorption and the VIUPD, C) Relationship between CO2 absorption and the VIUPD, 
D) Relationship between CO2 absorption and the VIUPD. The solid lines in the figures 
represent regression results by the equation f(x) = ax2 + bx + c. 
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When sunlight strikes objects, certain wavelengths are absorbed and other wavelengths are reflected. Chlorophyll in plant 

leaves strongly absorbs visible light (from 0.4 to 0.7 nm) for use in photosynthesis. The leaf cell structure, on the other hand, 

strongly reflects near-infrared light (from 0.7 to 1.1 nm). The quantity of absorbed CO2 can reflect vegetation vigor. Plants with 

higher CO2 absorption rates can be expected to have greater vegetation index values. 

Figure 4.2 shows the relationship between various kinds of vegetation indices and gross photosynthetic production 

measured on the ground, as described in Section 3. The solid lines in the figures represent regression results by the equation f(x) = 

ax2 + bx + c. The VIUPD showed a much smaller a coefficient value (6.25) than did the VIPD, EVI, and NDVI. These results 

suggest that the VIUPD has a greater linear correlation with gross photosynthetic production than do the VIPD, EVI, and NDVI.  

 

4.4. Relationship between vegetation indices and number of overlapping leaves 

As described above, the more leaves a plant has, the more light will be reflected as a function of wavelength. A vegetation 

index should be sensitive to the density or thickness of surface vegetation. In this study, we verified the relation between the 

number of overlapping leaves and the VIs. Figure 4.3 shows the relationships between the VIs and number of overlapping 

leaves. The solid lines represent regression results using the formula f(x) = a(1−℮-bx), the horizontal axes represent the number of 

overlapping leaves of Cinnamonum camphora trees. The results show that the b coefficient values are smaller for the VIUPD 

than for the VIPD, EVI, and NDVI. Thus, the VIUPD is more sensitive than the other indices to the number of overlapping 

leaves. 
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Figure 4.3. Relationships between the VIs and the number of overlapping leaves. A) Relationship 

between the VIUPD and the number of overlapping leaves, B) Relationship between the 
VIPD and the number of overlapping leaves. C) Relationship between the EVI and the 
number of overlapping leaves, D) Relationship between the NDVI and the number of 
overlapping leaves. The horizontal axes represent the number of overlapping leaves of 
Cinnamonum camphora trees. 
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4.5.  Relationships between vegetation indices 

We compared the VIUPD with the EVI, NDVI, and VIPD using various green-leaf, yellow-leaf, dead-leaf, soil, and 

water samples for a CONTINUE sensor; to calculate the VIs we used the blue (481.0~490.0 nm), red (651.0~660.0nm), and 

NIR (811.0~820.0 nm) bands. Figure 4.4 illustrates the relationships between selected VIs and the VIUPD. Diagram A shows 

the relationship between the EVI and VIUPD for about 600 samples; diagram B shows the relationship between the NDVI and 

VIUPD, and diagram C shows the relationship between the VIPD and VIUPD.   

Figure 4.4 demonstrates the sensitivity of all VIs to water, vegetation, and soil. For one part of the yellow-leaf and dead-

leaf patterns, the NDVI and EVI show opposite values, that is, some dead-leaf values are bigger than those of yellow-leaves. 

Since the NDVI and EVI use only two wavelengths (i.e., red and near infrared bands), reflectance corresponding to the two 

bands is nearly the same for typical yellow leaves, while for typical dead leaves, the reflectance for the red band is smaller than 

that for the infrared band, as shown in Figure 4.5. Thus, some of the VI values for dead and yellow-leaves shown in Figure 4.4 

are reversed. For soil, the VIPD has large positive values, which are compatible with yellow leaves.   

Figure 4.4 show that among EVI, NDVI, VIPD, and VIUPD, only VIUPD gives the expected order from green-leaf to 

water. That is, VIUPD is the best vegetation index among EVI, NDVI, VIPD, and VIUPD. 
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Figure 4.4. Relationships between selected VIs and the VIUPD. A) Relationship between the EVI 

and the VIUPD, B) Relationship between the NDVI and the VIUPD, C) Relationship 
between the VIPD and the VIUPD. 
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Figure 4.5. Spectral patterns of a typical vegetation sample 

 

5.  Summary and conclusions 

We developed a universal pattern decomposition method to obtain sensor-independent pattern decomposition 

coefficients. In this paper, a new vegetation index, based on the UPDM, was examined. To investigate how well the method 

measured vegetation change, we ground-measured about 600 samples, including green-leaf, yellow-leaf, dead-leaf, soil, water, 

and concrete samples. In addition to the three standard spectral patterns, we used a supplemental yellow-leaf spectral pattern to 

study vegetation change in detail.  

The vegetation index, based on the universal pattern decomposition index (VIUPD), reflects the linear sum of the four 

pattern decomposition coefficients. The VIUPD reflected vegetation concentrations, the amount of CO2 absorption, and the 

degree of terrestrial vegetation vigor more sensitively than did the NDVI and EVI, and was especially sensitive to CO2 

absorption. The NDVI and EVI became more rapidly saturated as a function of PAR. Two or three reflectance bands are used 

to calculate EVI and NDVI, while the VIUPD and VIPD use multi-spectral satellite- and ground-measured reflectance data. As 

a sensor-independent index, the VIUPD is more suitable for multi-spectral analysis than the EVI, NDVI, and VIPD. Using 

multi-spectral data, the VIUPD can provide sensor-independent physical values and allow for direct comparisons using data 

from various sources. 

Future VIUPD research will concentrate on applications using MODIS data and ETM data acquired over the Three 

Gorges region of China, and will compare VIUPD results with EVI and NDVI results. 
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