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Chapter 1

On the equivalence of the Arrow
impossibility theorem and the Brouwer
fixed point theorem

We will show that in the case where there are two individuals and three alternatives (or under the as-
sumption of free-triple property) the Arrow impossibility theorem (Arrow!(1963)) for social welfare
functions that there exists no social welfare function which satisfies transitivity, Pareto principle, in-
dependence of irrelevant alternatives, and has no dictator is equivalent to the Brouwer fixed point
theorem on a 2-dimensional ball (circle). Our study is an application of ideas by|Chichilnisky|(1979)
to a discrete social choice problem, and also it is in line with the work by Baryshnikov| (1993). But
tools and techniques of algebraic topology which we will use are more elementary than those in
Baryshnikov| (19931,

1.1 Introduction

Topological approaches to social choice problems have been initiated by |Chichilnisky| (1980). In her
model a space of alternatives is a subset of Euclidean space, and individual preferences over this set are
represented by normalized gradient fields. Her main result is an impossibility theorem that there exists
no continuous social choice rule which satisfies unanimity and anonymity. This approach has been further
developed by (Chichilnisky (1979)), (1982), |Koshevoy| (1997), [Lauwers| (2004), and so on. In particular, by
Chichilnisky|(1979) the equivalence of her impossibility result and the Brouwer fixed point theorem in the
case where there are two individuals and the choice space is a subset of 2-dimensional Euclidian space has
been shown. On the other hand, |Baryshnikov| (1993) and (1997) have presented a topological approach
to Arrow’s general possibility theorem, which is usually called the Arrow impossibility theorem (Arrow
(1963)), in a discrete framework of social choicd2.

We will examine the relationship between the Arrow impossibility theorem for social welfare functions

that there exists no binary social choice rule which satisfies transitivity, Pareto principle, independence of

*I This chapter is based on my paper of the same title published in Applied Mathematics and Computation, Vol.
172, No. 2, pp. 1303-1314, 2006, Elsevier.
*2 About surveys and basic results of topological social choice theories, see Mehtal (1997) and [Cauwers| (2000).
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irrelevant alternatives and has no dictato®3, and the Brouwer fixed point theorem on a 2-dimensional ball
in the case of two individuals and three alternatives (or under the assumption of free-triple property .
Our study is an application of ideas by |Chichilnisky| (1979)) to a discrete social choice problem, and also
it is in line with the work by |Baryshnikov| (1993). But tools and techniques of algebraic topology which
we will use are more elementary than those used in |[Baryshnikov| (1993). He used an advanced concept
of algebraic topology, nerve of a covering. It is not contained in most elementary textbooks of algebraic
topology, and is difficult of access for most economists. Our main tools are homology groups of simplicial
complexes. Of course, the Brouwer fixed point theorem is a theorem about continuous functions. We will
consider a method to obtain a continuous function from a discrete social choice rule. Mainly we will show

the following results.

1. The Brouwer fixed point theorem is equivalent to the result that the restriction to an n — 1-
dimensional sphere S”~! of a continuous function from an n-dimensional ball D" to S™~! is
homotopic to a constant mapping.

2. The restriction of a continuous function obtained from a social welfare function which satisfies
transitivity, Pareto principle, independence of irrelevant alternatives and has no dictator to a subset
of the set of profiles of individual preferences, which is homeomorphic to a 2-dimensional ball
(or circle) and the subset is homeomorphic to a 1-dimensional sphere (or circumference), is not
homotopic to a constant mapping. It implies that the non-existence of social welfare function which
satisfies transitivity, Pareto principle, independence of irrelevant alternatives and has no dictator is

equivalent to the Brouwer fixed point theorem on a 2-dimensional ball.

In the next section we present the model of this chapter, and consider the homology groups of simplicial
complexes which represent the set of individual preferences and the set of the social preference. In Section
1.3 we will show a result about the Brouwer fixed point theorem and homotopy of continuous functions.

In Section 1.4 we will prove the main results.

1.2 The model

There are two individuals, A and B, and three alternatives of a social, economic or political problem,
X1, X2 and x3 (or we assume free-triple property). Individual preferences about these alternatives are not
restricted. We assume that individual preferences for these alternatives are linear, that is, their preferences
are always strict, and they are never indifferent about any pair of alternatives. Individual preferences
must be complete and transitive. A social choice rule which we will consider is a rule which determines
a preference of the society about x;, x, and x3 corresponding to a combination of preferences of two
individuals. Transitive social choice rule is called a social welfare function. We require that social welfare
functions satisfy Pareto principle and independence of irrelevant alternatives as well as transitivity. The

means of the latter two conditions are as follows.

Pareto principle If all individuals prefer an alternative x; to another alternative x;, then the society must

prefer x; to x;.

*3 Dictator is an individual whose (strict) preference always coincides with the social preference.
*4 Under the assumption of free-triple property, for each combination of three alternatives individual preferences
are not restricted.



1.2 The model

vr V2 U3z V4 Us Vg U1

Figure 1: R

Independence of irrelevant alternatives The social preference about any pair of two alternatives x; and
x; is determined by only individual preferences about these alternatives. Individual preferences

about other alternatives do not affect the social preference about x; and x;.

The Arrow impossibility theorem states that there exists a dictator for any social welfare function which
satisfies transitivity, Pareto principle and independence of irrelevant alternatives, or in other words there
exists no social welfare function which satisfies these conditions and has no dictator. Dictator is an indi-
vidual whose (strict) preference always coincides with the social preference.

From the set of individual preferences we draw a diagram by the following procedures.

1. When an individual prefers x; to x, to x3, such a preference is denoted by (123), and corresponding
to this preference we define a vertex v;. Similarly, when an individual prefers x; to x3 to x;, such
a preference is denoted by (132), and we define a vertex v,. By similar procedures the following

vertices are defined.

v1 = (123), va = (132), v3 = (312), vs = (321), vs = (231), v = (213)

For example, vg = (213) denotes a preference of an individual such that he prefers x, to x; to x3.
2. These six vertices are plotted on a line segment in this order, locate v; at both end points, and

connect the vertices.

Denote this diagram by R, and call vy, va, - - -, vg the vertices of R. It is depicted in Figure[Il

Two v;’s at both end points of R are not distinguished. The set of individual preferences is represented
by R, and the set of combinations of the preferences of two individuals is represented by the product space
R x R. These combinations of individual preferences are called preference profiles. R x R is depicted as a
square in Figure[2l The preference of individual B is represented from bottom up, not from left to right.
Individual preferences are denoted by p4 = vy, pp = v, and so on, and preference profiles are denoted
by p = (pa, ps) = (v1,v3), and so on.

The social preference is represented by a circumference depicted in Figure [3l We call this circumfer-
ence S!. The vertices of S! are denoted by wy, w,, ---, we. These vertices mean the following social
preferenced™.

1. wy: The society prefers x; to x, x5 to x3.
2. wy: The society prefers x; to x3, x3 to x;.
3. ws: The society prefers x3 to x1, x1 to x,.
4,

w4: The society prefers x3 to x;, x5 to xj.

*3 From Lemma 1 of [Baryshnikov] (1993) we know that if individual preferences are strict orders, then the social
preference is also a strict order under transitivity, Pareto principle and independence of irrelevant alternatives.
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A
v2 U3 U4 V3 Vg
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Figure2: R xR

Wy
Ws w3
We w2
w1
Figure 3: S!

5. ws: The society prefers x, to x3, x3 to xj.

6. wg: The society prefers x5 to x1, x1 to x3.

The 1-dimensional homology group (with integer coefficients) of S! is isomorphic to the group of inte-
gers Z, that is, we have H,(S!) = Z.

A social welfare function F is defined as a function from the vertices of R x R to the vertices of S!.
Let us consider a method to obtain a continuous function from a social welfare function defined on the
vertices of R x R. For example, for points included in a small triangle which consists of (vy, v3), (v2, v3)

and (v,, v4) we define

F(a(vy,v3) + B(v2,v3) + y(v2,v4)) = aF (v1,v3) + BF(v2,v3) + yF(v2,v4)
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where 0 =a =1,0=p=1land0 =y =1,a + B + y = 1. Then, we can obtain a continuous function
for the points in this triangle. By similar ways this continuous function is extended to the entire R x R,
and we obtain a continuous function for all points in R x R from a discrete social welfare function on the
vertices of R x R. Denote this continuous function by F : R x R — S,

Let us see that this continuous function is well defined for the entire R x R. By independence of irrelevant
alternatives, for example, if F(vy,v3) = wi, we must have F(vp,v3) = wy or F(vp,v3) = wy. As this
example shows, preferences represented by adjacent two vertices of R x R are identical about two pairs of
alternatives. When the preference of one of two individuals changes, the social preference does not change,
or it changes to one of adjacent vertices. Therefore, F is a simplicial mapping. If the preferences of two
individuals change, the social preference moves at most two vertices clockwise or counter-clockwise on
S, and hence the social preference does not change to the antipodal point or across the antipodal point
on S'. Thus, aF (v, v3) + BF (v2, v3) + yF (v2, v4) is well defined. Other cases are similar. Since F defined
on the vertices of R x R is a simplicial mapping, we can define the homomorphism of homology groups
induced by F. It is denoted by F.

Now we consider the following set A of vertices of R x R.
A = {(v1,v1), (v2,v2), (v3,V3), (v, v4), (V5, V5), (Ve, V6), (V1,V1)}

The diagram obtained by connecting these vertices is also denoted by A. It is homeomorphic to R. Pref-
erence profiles of two individuals when the preference of individual B is fixed at v;, and preference profiles
when the preference of individual A is fixed at vy are denoted, respectively, by A = {(p4, pp) : pB = v1}
and B = {(p4, pp) : p4a = v1}. The diagrams obtained by connecting vertices of A, and similarly ob-
tained from B are also denoted, respectively, by 4 and B. They are also homeomorphic to R. The union
of these three sets A U A U B is depicted as the boundary a7} of the triangle 77 in Figuredl AU AU B
is homeomorphic to the circumference S!. The vertices at four corners of the square depicted in Figure
Ml represent the same profile (vy, v1). The value of F for them are equal. The 1-dimensional homology
group of A U A U B isomorphic to Z, that is, H1(AU AU B) = Z.

1.3 The Brouwer fixed point theorem

In this section we show the following theorem about homotopy and the degree of mapping of a contin-

uous function on an n — 1-dimensional sphere.

BNote Let F be a function from n — 1-dimensional sphere S” ! to itself, and Fx be the homomorphism

of homology groups induced by F,

Fuo: Hy1(S"Y) — H,_1(S™Y)

Hy,—1(S™ 1) is the n — 1-dimensional homology group of S”~!. Then, the degree of mapping of F, which

is denoted by dF, is defined as an integer which satisfies
Fy(h) = dph for he H,_(S" 1)
Theorem 1.1 The following two results are equivalent.

1. If there exists a continuous function from an n-dimensional ball D" to an n — 1-dimensional sphere
§"1'(n=2), F: D" — S™ !, then the following function, which is obtained by restricting F to
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the boundary §"~! of D",
Flgn-1: §" 1 — gn-1

is homotopic to a constant mapping. Since the degree of mapping of a constant mapping is zero,
the degree of mapping of F|gn—1 is zero.
2. (The Brouwer fixed point theorem) Any continuous function from D" to D" (n = 2), G : D" —

D", has a fixed point.

Proof. (1) — (2)
Assume that G has no fixed point. Since we always have v # G(v) at any point v in D", there
is a half line starting G(v) across t#9 Let F(v) be the intersection point of this half line and the
boundary of D", which is S”~!. Then, we obtain the following continuous function from D" to
sn—t

F: D" — §"!
In particular, we have F(v) = v for v € S"~!. Therefore, F|gs—1 is an identity mapping. But, be-
cause an identity mapping on S”~! is not homotopic to any constant mapping, it is a contradiction.
2 — O
We show that if there exists a continuous function F from D" to S”~!, (1) of this theorem is correct
whether a continuous function G from D" to D" has a fixed point or not. Define f;(v) = F[(1 —
t)v](0 =t =< 1) for any point v of S”~!. Then, we get a continuous function f; : S"~ ! — §"~1,
(1 — t)v is a point which divide ¢ : 1 — ¢ a line segment between v and the center of D”, and it is
transferred by F to a point on S”"~!. We have fo = F|gn—1,and f; = F(0) is a constant mapping
whose image is a point F(0). Since f; is continuous with respect to ¢, it is a homotopy from F|gn—1

to a constant mapping, and the degree of mapping of F|gn—1 is zero.

*6 If v is a fixed point, G(v) and v coincide, and hence there does not exist such a half line.
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An implication of this theorem is as follows.

Corollary 1.1 If there exists a function from D" to S”~!, F : D" — S™~! and its restriction to S"~!,

Flgn-1: S"1 — S"1 is not homotopic to a constant mapping, F can not be continuous.

In relation to a social welfare function on R x R, if there exists a function F defined on the vertices
of R x R, we can obtain a continuous function on the entire R x R from F by the way explained above.
Then, there exists a continuous function defined on 77. Since T} is homeomorphic to D? (2-dimensional
ball), and A U A U B is homeomorphic to S' (1-dimensional sphere), the restriction of F to A U A U
B, F|au4up, must be homotopic to a constant mapping. If, when we require that transitivity, Pareto
principle, independence of irrelevant alternatives and the non-existence of dictator are satisfied by a social
welfare function defined on the vertices of R x R, the restriction of this function to A U 4 U B is not
homotopic to a constant mapping, then there does not exist such a social welfare function in the first

place.

1.4 The main results
From the preliminary analyses in the previous sections we can show the following lemma.

Lemma 1.1 Suppose that there exists a social welfare function F : Rx R —> S! which satisfies transitivity,
Pareto principle and independence of irrelevant alternatives. If F has no dictator, then the degree of

mapping of F|au4up 1s not zero, and hence it is not homotopic to a constant mapping.

Proof. By Pareto principle the vertices of A correspond to the vertices of S as follows.
(v1,v1) —> w1, (V2,v2) —> w2, (v3,v3) —> w3

(v4,v4) —> wa, (vs,v5) —> ws, (vs, V) —> We

Next, also by Pareto principle, (v, v1) corresponds to w; or w, in S!. First, assume

(v2,v1) —> w2 (1.1)

(LI) means that when individual A prefers x3 to x, and individual B prefers x, to x3, then the society

prefers x3 to x,. By Pareto principle, independence of irrelevant alternatives, and transitivity we have

(v4,v6) —> w4

This means that when individual A prefers x3 to x; and individual B prefers x; to x3, then the society

prefers x5 to x;. Similarly, we get
(vs,v1) — ws

This means that when individual A prefers x, to x; and individual B prefers x; to x,, then the society

prefers x, to x;. Similarly, we get
(ve, v2) —> we

This means that when individual A prefers x, to x3 and individual B prefers x3 to x,, then the society

prefers x, to x3. Similarly, we get
(v1,v3) — wy
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This means that when individual A prefers x; to x3 and individual B prefers x3 to x, then the society

prefers x; to x3. Similarly, we get
(v2,v4) —> w2

This means that when individual A prefers x; to x, and individual B prefers x, to x1, then the society
prefers x; to x;. These correspondences imply that individual A is the dictator. Therefore, if there is no

dictator, we must have
(1)2, vl) —> W1

This means that when individual A prefers x3 to x, and individual B prefers x, to x3, then the society

prefers x, to x3. By Pareto principle and independence of irrelevant alternatives we get

(v3,v1) — wy

This means that when individual A prefers x3 to x; and individual B prefers x; to x3, then the society

prefers x; to x3. Similarly, we get
(v4,v2) —> w2

This means that when individual A prefers x, to x; and individual B prefers x; to x;, then the society
prefers x; to x,. Then, by Pareto principle and independence of irrelevant alternatives we get correspon-
dences from preference profiles to the social preference when the preference of individual B is fixed at vy

as follows.
(v4,v1) — w1, (vs,v1) — w1, (v, V1) — W1

Therefore, correspondences from the vertices of A to the vertices of S! are obtained as follows.
(v1,v1) — wi, (va2,v1) — wi, (V3,V1) — Wy
(v4, V1) — w1, (vs,v1) — w1, (v, V1) —> Wy
By similar logic, if individual B is not a dictator, correspondences from the vertices of B to the vertices
of ST are obtained as follows.
(v1,v1) — wy, (v1,v2) — wi, (V1,V3) — Wy
(v1,v4) — w1, (v1,05) — w1, (V1,V6) —> W1
Sets of simplices which are 1-dimensional cycles of AU AU B are only the following z and its counterpart
—z.

z = < (v1,v1), (V2,v1) > + < (v2,v1), (V3, V1) > + < (v3,V1), (V4, V1) >
+ < (v4,v1), (vs5,v1) > + < (vs, V1), (v6, V1) > + < (ve, V1), (V1,V1) >
+ < (v1,v1), (V1,v2) > + < (v1,02), (v1,V3) > + < (v1,v3), (V1,v4) >
+ < (v1,v4), (V1,05) > + < (v1,05), (v1,V6) > + < (v1,V6), (V1,V1) >
+ < (v1,v1), (v6, v6) > + < (vs, V6), (v5,V5) > + < (vs,V5), (V4, Vg) >

+ < (vg,v4), (v3,V3) > + < (v3,V3), (V2,V2) > + < (V2,V2), (V1,V7) >

Since A U A U B has no 2-dimensional simplex, z is a representative element of homology classes of

AU AU B. z is transferred by the homomorphism of homology groups F, induced by F to the following
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z/in St
I =<wpw >+ <w,w >+ <wL,wp >+ <wp,w; >4+ < wp,wp >
+ <wi,wy >+ <w,w; >+ <wp,w >+ <wp,w >+ <wp,wp >
+ <wi,w; >+ < wi,w >+ < Wi,We > + < Wg, Ws > + < W5, Wy >
+ < Wwyq, w3 >+ < wi, Wy >+ < Wy, Wy >
=< Wi, We >+ < Wg, W5 >+ < W5, Wq > + < Wy, W3 >+ < W3, Wy >

+ < wy,w; >

Thisis a cycle of S'. Therefore, the homology group induced by (Fx)|auus, which is the homomorphism
of homology groups induced by F|au4ug, is not trivial, and hence the degree of mapping of F|ayu4up is

not zero. O

From Theorem [[. Il we obtain the following result.

Theorem 1.2 The non-existence of social welfare function which satisfies transitivity, Pareto principle,
independence of irrelevant alternatives and has no dictator (the Arrow impossibility theorem) is equivalent

to the Brouwer fixed point theorem.

1.5 Concluding remarks

We have shown that with two individuals and three alternatives the Arrow impossibility theorem is
equivalent to the Brouwer fixed point theorem on a 2-dimensional ball (circle) using elementary concepts
and techniques of algebraic topology, in particular, homology groups of simplicial complexes, homomor-
phisms of homology groups.

Our approach may be applied to other social choice problems such as Wilson’s impossibility theo-
rem (Wilson! (1972)), the Gibbard-Satterthwaite theorem (Gibbard| (1973)) and Satterthwaite (1975)) and
Amartya Sen’s liberal paradox (Sen| (1979)).
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Chapter 2

A topological approach to the Arrow
iImpossibility theorem when individual
preferences are weak orders

We will present a topological approach to the Arrow impossibility theorem of social choice theory
that there exists no binary social choice rule (which we will call a social welfare function) which
satisfies the conditions of transitivity, independence of irrelevant alternatives (IIA), Pareto principle
and non-existence of dictator. Our research is in line with the studies of topological approaches
to discrete social choice problems initiated by |Baryshnikov| (1993). But tools and techniques of
algebraic topology which we will use are more elementary than those in|Baryshnikov (1993). Our
main tools are homology groups of simplicial complexes. And we will consider the case where
individual preferences are weak orders, that is, individuals may be indifferent about any pair of

alternatives. This point is an extension of the analysis by [Baryshnikov] (19931,

2.1 Introduction

Topological approaches to social choice problems have been initiated by [Chichilnisky| (1980). In her
model a space of alternatives is a subset of a Euclidean space, and individual preferences over this set are
represented by normalized gradient fields. Her main result is an impossibility theorem that there exists
no continuous social choice rule which satisfies unanimity and anonymity. This approach has been further
developed by |Chichilnisky| (1979), (1982), Koshevoy| (1997), [Lauwers (2004), |Weinberger| (2004), and so
on. On the other hand, Baryshnikov|(1993) and (1997) have presented a topological approach to Arrow’s
general possibility theorem, which is usually called the Arrow impossibility theorem (Arrowl (1963)), in a
discrete framework of social choicd®Z. But he used an advanced concept of algebraic topology, nerve of
a covering. 1t is not dealt with in most elementary textbooks of algebraic topology, and is difficult of
access for most economists. And he considered only the case where individual preferences are strict, that
is, individuals are never indifferent about any pair of alternatives. In this chapter we will attempt a more

simple and elementary topological approach to the Arrow impossibility theorem under the assumption

*I This chapter is based on my paper of the same title published in Applied Mathematics and Computation, Vol.
174, No. 2, pp. 961-981, 2006, Elsevier.
*2 About surveys and basic results of topological social choice theories, see[Mehtal (1997) and [Lauwers| (2000).
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of the free triple property. Our main tools are homology groups of simplicial complexes. It is a basic
concept of algebraic topology, and is dealt with in almost all elementary textbooks in this field. And we
will consider the case where individual preferences are weak orders, that is, individuals may be indifferent
about any pair of alternatives. This point is an extension of the analysis by Baryshnikov|(1993).

Mainly we will show the following results.

1. Let A be an inclusion map from the set of individual preferences to the set of the social preference.
Let i; be an inclusion map from the set of the preference of individual i (a representative individual)
to the set of the social preference, and F be a transitive binary social choice rule (which we will call
a social welfare function). Let (F o A)x and (F o i;)« be homomorphisms of homology groups
induced by the composite functions of these inclusion maps and FE3. Then, we will obtain the

following results.

k
(FoA), = Z(F o i)« (k is the number of individuals)

i=1

(Fod)#0

2. On the other hand, if social welfare functions satisfy the conditions of Pareto principle, indepen-
dence of irrelevant alternatives (ITA) as well as transitivity and non-existence of dictator, we can

show
(Foij)x =0foralli

(1) and (2) contradict. Therefore, there exists no binary social choice rule which satisfies transitivity,

Pareto principle, IIA and non-existence of dictator.

In the next section we present our model and calculate the homology groups of simplicial complexes

which represent individual preferences. In Section 2.3 we will prove the main results.

2.2 The model and simplicial complexes

There are n(> 3) alternatives and k(> 2) individuals. n and k are finite positive integers. Denote
individual i’s preference by p;. A combination of individual preferences, which is called a preference
profile, is denoted by p, and the set of preference profiles is denoted by P*. The alternatives are represented
by x;, i = 1,2,---,n. Individual preferences over the alternatives are weak orders, that is, individuals
strictly prefer one alternative to another, or are indifferent between them. We consider a social choice rule
which determines a social preference corresponding to a preference profile. Transitive social choice rule is
called a social welfare function and is denoted by F(p). We assume the free triple property, that is, for each
combination of three alternatives individual preferences are never restricted.

Social welfare functions must satisfy Pareto principle and independence of irrelevant alternatives (I1A)

as well as transitivity. The meanings of the latter two conditions are as follows.

Pareto principle When all individuals prefer an alternative x; to another alternative x;, the society must

prefer x; to x;.

*3 A homomorphism / is a mapping from a group A to another group B which satisfies h(x + y) = h(x) + h(y)
forx e A,y € B.
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Independence of irrelevant alternatives (IIA) The social preference about every pair of two alternatives
x; and x; is determined by only individual preferences about these alternatives. Individual prefer-

ences about other alternatives do not affect the social preference about x; and x;.

The Arrow impossibility theorem states that there exists no binary social choice rule which satisfies the
conditions of transitivity, IIA, Pareto principle and non-existence of dictator. Dictator is an individual
whose strict preference always coincides with the social preference.

Hereafter we will consider a set of alternatives x;, x, and x3. From the set of individual preferences

about x1, x, and x3 we construct a simplicial complex by the following procedures.

1. A preference of an individual such that he prefers x; to x, is denoted by (1, 2), a preference such
that he prefers x, to x; by (2, 1), a preference such that he is indifferent between x; and x5 by (1, 2),
and similarly for other pairs of alternatives. Define vertices of the simplicial complex corresponding
to (i, j) and (i, ).

2. A line segment between the vertices (i, j) and (k, /) is included in the simplicial complex if and only
if the preference represented by (i, j) and the preference represented by (k, /) are consistent, that is,
they satisfy transitivity. For example, the line segment between (1, 2) and (2, 3) is included, but the
line segment between (1,2) and (2, 1) is not included in the simplicial complex. The line segment
between (1, 2) and (2, 3) is included, but the line segment between (1,2) and (1, 2) is not included
in the simplicial complex.

3. A triangle (circumference plus interior) made by three vertices (i, j), (k, /) and (m, n) is included in
the simplicial complex if and only if the preferences represented by (i, j), (k,!) and (m, n) satisfy
transitivity. For example, since the preferences represented by (1, 2), (2, 3) and (1, 3) satisfy transi-
tivity, a triangle made by these three vertices is included in the simplicial complex. But, since the
preferences represented by (1, 2), (2, 3) and (3, 1) do not satisfy transitivity, a triangle made by these
three vertices is not included in the simplicial complex. Similar for triangles which include a ver-
tex (i, j). Since the preferences represented by (1,2), (2,3) and (1, 3) satisfy transitivity, a triangle
made by these three vertices is included in the simplicial complex. But, since the preferences repre-
sented by (1,2), (2,3) and (3, 1) do not satisfy transitivity, a triangle made by these three vertices is

not included in the simplicial complex.

The simplicial complex constructed by these procedures is denoted by P.

In Figure [l the simplicial complex made by preferences which do not include indifference is depicted.
This is called C;. It is homotopic to a circumference of a circle (a 1-dimensional sphere S!). The simpli-
cial complex made by preferences which may include indifference is constructed by adding the following

simplicial complexes to Cj.

The triangle made by (1, 2), (2, 3), (1, 3) and its edges and vertices
The triangle made by (1, 2), (3, 2), (3, 1) and its edges and vertices
The triangle made by (1, 3), (1, 2), (3, 2) and its edges and vertices
The triangle made by (1, 3), (2, 1), (2, 3) and its edges and vertices
The triangle made by (2, 3), (1,2), (1, 3) and its edges and vertices

The triangle made by (2, 3), (2, 1), (3, 1) and its edges and vertices
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(1.2)

/(2
(2,3)¢ *(3,1)

Figure 1: The simplicial complex made by preferences not including indifference (Cy)

(1.3), , (3.2)

(2.3) * (3.1

Figure2: C;

The triangle made by (1, 2), (2, 3), (1, 3) and its edges and vertices

The first two simplicial complexes are depicted in Figure[2l This is called C,. The latter five simplicial
complexes are depicted in Figure[3l This is called D. Let us denote C = C; U C,.

P is the union of C and D. The intersection of C and D is the graph depicted in Figure[d This is
homotopic to isolated three points. It is denoted by E. Its 0-dimensional homology group is isomorphic
to the group of three integers, and its 1-dimensional homology group is trivial, that is, Ho(E) = Z3 and
Hi(E) = 0.

Now, we can show the following lemma.

Lemma 2.1 The 1-dimensional homology group of P is isomorphic to the group of 6 integers, that is,
H(P) = 7°.

Proof. P contains the following 1-dimensional simplices.
o1 =< (1,2),(2,3) >, 0 =< (1,2),(3,2) >, 03 =< (1,2),(1,3) >

o4 =<(1,2),3,1) >, 05 =< (2,1),(2,3) >, 06 =< (2,1),(3,2) >
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(2,3) (3,2

(2,1) (1,2)

(2.3)
3, 1) (1,3)

Figure3: D

o7 =<(2,1),(1,3) >, 0g =< (2,1),(3,1) >, 09 =< (2,3),(1,3) >
010 =< (2,3),(3,1) >, 011 =< (3,2),(1,3) >, 012 =< (3,2),(3,1) >
013 =< (1,2).(2.3) >, 014 =< (1.2).(3.2) >, 015 =< (1.2),(1,3) >
016 =< (1.2).3.1) >, 017 =< (2.3).(1,2) >, 018 =< (2.3). (2. 1) >
019 =< (2,3).(1.3) >, 020 =< (2.3).3. 1) >, 021 =< (1.3),(1,2) >
022 =< (1.3).(2.1) >, 023 =< (1.3).(2.3) >, 024 =< (1.3).(3.2) >

025 =< (1»_2)’ (m) >, 026 =< (m)v(la_:;) >, 027 =< (27_3)’ (ﬁ) >

An element of the 1-dimensional chain group of P is written as follows.

27
c1(P) = ZaiUi
i=1

ai, asz,---, a7 are integers.

From this we obtain

de1(P) =(—ar —az —asz —aq + a7 +axn) < (1,2) >

4+ (—as —a¢ —a7—ag +aig +az) <2,1) >

+ (a1 +as—ag—ay +ais +az) <(2,3) >

+ (a2 +ae—ai —aiz + ais + az) < (3,2) >

+ (a3 + a7+ a9 +an +ais +ap) <(,3) >
+(as +ag +ajo+aiz+ae+azx) <3,1) >

+ (—ai13 —ais —ais — aie — azs — dze) < (L_2) >
+ (—a17 —aig —ayo — azo + azs —az7) < (2,3) >

+ (—a21 — a2y — a3 — Aza + dze + az7) < (1,3) >

@2.1)

The conditions for an element of the 1-dimensional chain group of P, ¢1(P), to be a cycleis dc1 (P) = 0.

For this condition to hold all coefficients of dc; (P ) must be zero, and we obtain the following equations.

—ay—az—asz—as+ay;+ax =0, —as —ag—az; —ag +aig +ax =0
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(12

13) 32

(1,2)

(21)

(2,3)//. -(3,1)

Figure 4: E: (The intersection of C and D)

a1 +as—ag—ayg+aiz+axz =0, a;+a¢—ain —aix +as+axy =0
as+ay+ag+ai +ais+aw =0, a4 +ag+ap+ai2+as+aw =0
—a13 — a4 —ais —die —azs —azs = 0, —ay7 —aig —ajg —azy +azs —az; =0

—dp1 — Az — 23 — A4 + dze + a7 =0

Summing up the first 8 equations side by side we get the last equation. Therefore, only 8 equations are
independent, and we can freely choose the values of 19 variables among a,das,--- ,az7. Thus, the 1-
dimensional cycle group of P, Z;(P), is isomorphic to the group of 19 integers, that is, Z;(P) = Z'°.

P contains the following 2-dimensional simplices.
71 =<(1,2),(2,3),(1,3) >, 2 =< (1,2),(3,2),(3,1) >
73 =< (1,2),(3,2),(1,3) >, u =< (2,1),(2,3),(1,3) >
5 =<(2,1),(3,2),(3,1) >, 16 =< (2,1),(2,3),(3,1) >
17 =<(1,2),(2,3),(1,3) >, 1 =< (1,2),(3,2), (3, 1) >
7 =< (2,3),(1,2),(1,3) >, 110 =< (2,3),(2,1), 3, 1) >
1 =< (1,3).(1,2).(3.2) >, 112 =< (1,3). (2. 1).(2.3) >

T13 =< (ﬁ),(ﬂ),(l,_ﬂ >

An element of the 2-dimensional chain group of P is written as follows.

13
c2(P) =) biti
i=1



16 Chapter 2 A topological approach to the Arrow impossibility theorem

b1, by, --+, b1z are integers. The image of the boundary homomorphism of the 2-dimensional chain group
of Pis

13
dea(P) =) b0
i=1
=bio1 + (b2 + b3 + b11)o2 + (—b1 — b3 + bo)o3 — by04 + (bs + bs + b12)05
+ bsog — bao7 — (b5 + bg)og + (b1 + bg + b7)o9 + bgo19
+ b3011 + (b + bs + bg)o12 + b7013 + bgo14 — b7015
—bgo16 + boo17 + b10018 — boo19 — b10020 + D11021

+ b12022 — b12023 — b11024 + b13025 — b13026 — b13027 2.2)

The values of the coefficients of o1, 03, 03, 05, 06, 03, 09, 012, 017, 018, 021, 022, 025 are determined by
b1, by,--- , b3, and then the values of other ¢’s are also determined. Thus, the 1-dimensional boundary
cycle group of P, By(P), is isomorphic to the group of 13 integers, that is, By (P) = Z'3. Therefore, the
1-dimensional homology group of P is isomorphic to the group of 6 integers, that is, we obtain H(P) =
Z1(P)/B1(P) = Z°. O

Next we consider the simplicial complex, P¥, made by the set of preference profiles of individuals, P¥,

about x1, x, and x3. We can show the following result.

Lemma 2.2 The 1-dimensional homology group of P is isomorphic to the group of 6k integers, that is,
H,(P¥) = 7.

Proof. As a preliminary result, we show H; (P x C) = Z8. Using C}, C#, C} and C§ depicted in Figure
Band[@3, C is represented as C = C' UC?, C' = CluUC), €C? = C2UC2. C! and C? are homotopic
to one point, and the intersection of C! and C? consists of two segments and one point, which is denoted
by G. G is homotopic to three isolated points, and we have H;(G) = 0 and Hy(G) = Z3. From these

arguments we obtain the following Mayer-Vietoris exact sequencd=

k w
Hi(P x G)(= (Z%)*) —— H{(P xCY)@® H;(P x C?)(= 7% & Z%) —— H{(P xC) ——>
o k
— S Ho(PxG)(=Z% —2> Ho(PxCH@® Ho(P xCH(=Z ®ZL) —>
2 Hy(PxC)=Z) — 0

Since wy is a surjection (onto mappingf9, we have Image wo =~ Z. By the homomorphism theorem we
obtain Hy(P x C') @ Ho(P x C?)/Ker wy = Z, and then Ker wy = Z is derived. Thus, from the
condition of exact sequences we have Image k¢ =~ Ker wy =~ Z. Again by the homomorphism theorem
we obtain Hy(P x G)/Ker ko = Image ko =~ Z, and we get Ker kg = Z @ Z. Thus, we have Image o =
Ker kg =~ Z & Z, and by the homomorphism theorem H;(P x C)/Ker oy =~ Z & Z is derived. From
the condition of exact sequences we have Ker «; =~ Image w;, and by the homomorphism theorem,
H{(P xCY)@® H (P x C?)/Ker w; = Image w is derived. From the condition of exact sequences we

obtain Ker w; =~ Image k. Now let us consider Image k.

4 Cl1 and C 12 are depicted in Figure[3] and C21 and C22 are depicted in Figure[6l

*5 About homology groups, the homomorphism theorem and the Mayer-Vietoris exact sequences we referred to
Tamural (1970) and [Komiyal(2001).

*6 This is derived from the condition of exact sequences.
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(2!3)' ('3’1) (311)

Figure 5: Cl1 and C12

(12
(1,3), (3,2)

(1.2) (1.2 (32)

L(1.2)

(2.1)

(2,3)* (3, 1) (31)

C21 and C22 G

Figure 6: cl, C22 and G

Let x, y, z be the vertices of three connected components of G. Leth € H;(P),then hxx € H{(P x
x),hxy € Hi(Pxy)and h x z € Hi(P x z) belong to the different homology classes. Since C'!
is connected, there exists a sequence of 1-dimensional simplices connected x and y, and a sequence
of 1-dimensional simplices connected x and z. Thus, they belong to the same homology class in

H{(P x C'). We can show a similar result for H; (P x C?). Therefore we obtain Image k; = Z°.

From Ker w; = Image k; we have Ker w; = Z°, and from H;(P xC')® H,(P xC?)/Ker w; = Image w;
we have Image w; = Z°. Thus, Ker oy = Z9 is derived. Therefore, we obtain H, (P xC) = Z3. By similar
procedures we can show H; (P x D) =~ Z8.
Using this result we will show H;(P?) = Z'2. Since P> = P x (C UD) = (P x C) U (P x D), and
(P xC)N (P x D)= P x E we obtain the following Mayer-Vietoris exact sequence.
Hy(P x E)= (Z6)%) — s H (P x C) & Hy(P x D)(= Z8 & Z8) —“'» Hy(P?) —

k
A Ho(PxE)=7Z3) —2 s Ho(PxC)® Ho(P xD)(=Z & Z) —>
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— ™ Hy(PY)(=Z) — 0

Since wy is a surjection, we have Image wo = Z. By the homomorphism theorem we obtain Hy(P xC) &
Hy(P x D)/Ker wy = Z, and Ker wy =~ Z is derived. Thus, from the condition of exact sequences we
have Image ko =~ Ker wy =~ Z. Again by the homomorphism theorem we obtain Ho(P x E)/Ker ko =
Image kg =~ Z, and Ker kg =~ Z & Z is derived. Thus, we have Image o; =~ Ker kg = Z & Z, and by
the homomorphism theorem H;(P?)/Ker oy = Z @ Z is derived. Again from the condition of exact
sequences we obtain Ker «; =~ Image w;, and by the homomorphism theorem we obtain H;(P x C) &
H,(P x D)/Ker w; =~ Image w;. Further, from the condition of exact sequences Ker w; =~ Image k; is

derived. Now consider Image k.

Let x, y, z be the vertices of the connected components of E. Leth € Hy(P), thenhxx € Hy(P xx),
hxye Hi(Pxy)and h x z € H{(P X z) belong to different homology classes. But, since C is
connected, there exists a sequence of 1-dimensional simplices connecting x and y, and a sequence
of 1-dimensional simplices connecting x and z. Thus, they belong to the same homology class in
H{(P x C). Similar for H,(P x D). Therefore, we obtain Image k; = Z°.

From Ker w; = Image k; we have Ker w; =~ Z°. And from H,(P xC)@® H;(P x D)/Ker w; = Image w;
we obtain Image w; = Z!'°. Thus, Ker a; = Z!0 is derived. Therefore, we get H;(P?) = Z'2.
Inductively we can show H;(P¥) =~ 75k, O

The social preference is also represented by P. The social preference about x; and x; is (i, j) or (j, i) or
(i, j). By the condition of ITA, individual preferences about alternatives other than x; and x; do not affect
the social preference about them. Thus, the social welfare function F is a function from the vertices in P¥
to the vertices in P. A set of points in P¥ spans a simplex if and only if individual preferences represented
by these points are consistent, that is, they satisfy transitivity, and the social preference derived from the
profile represented by these points also satisfies transitivity. Therefore, if a set of points in P¥ spans a
simplex, the set of points in P which represent the social preference corresponding to these points in P*
also spans a simplex in P, and hence the social welfare function is a simplicial map. It is naturally extended
from the vertices in P* to all points in P¥. Each point in P¥ is represented as a convex combination of
the vertices in P¥. This function is also denoted by F. When P represents the social preference, we denote
it by Ps. Then, F is defined as a function from P* to Ps.

We define an inclusion map from P to P¥, A: P — P¥: p — (p. p.--- ., p), and an inclusion map
which is derived by fixing preferences of individuals other than individual / top_;,i; : P — P*¥: p —

(p-1, p). The homomorphisms of 1-dimensional homology groups induced by these inclusion maps are
Av: 28— 2% h— (hh,--- h), heZ®
iyt 28— 7% : h —> (0,--- ,h,---,0) (only the I-th component is /
and others are zero, h € ZG)

From these definitions about A, and i;, we obtain the following relation.

A* =i1*+i2*+"‘+in* (23)

And the homomorphism of homology groups induced by F is represented as follows.

Fo: 7% — 7°: h= (hy,ha,--+ .hp) —> h, h € Z°
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The composite function of i; and the social welfare function F is F oi; : P —> Pg, and its induced
homomorphism satisfies (F o i;)« = Fx o ij«. The composite function of Aand Fis FoA: P — P,

and its induced homomorphism satisfies (F o A), = Fyx o Ay. From (2.3) we have

(FoA)x=(Foip)s+ (Foiz)x+-(Foiy)«

F oi; when a preference profile of individuals other than individual / is p_; and F oi; when a preference
profile of individuals other than individual / is p’; are homotopic. Thus, the induced homomorphism

(F oij)« of F oi; does not depend on the preferences of individuals other than /.

Note: Let Foi;(p—;, p1) be the composite function of i; and F when the preference profile of individuals
other than / is p_;, and F o i;(p’;, p;) be the composite function of i; and F when the preference
profile of individuals other than / is p__,. The component for one individual (denoted by k) of p_;
and that of p’_; are denoted by p and p; . His preferences for the pair of alternatives x; and x; are
denoted by pi (i, j) and p; (i, j). Each of them corresponds to a point (i, j) or (j,i) or (i,7)in
P. Let (m,n) be a point in P such that pi (i, j) and p; (i, j) are different from (m,n), (n,m) and
(m,n). Then, there exists a 1-dimensional simplex (a line segment) between py (i, j) and (m, n),

and a 1-dimensional simplex between p; (i, j) and (m,n). Let

14 1
P, j) =1 =20)pr(i.j) +2t(m,n), if0 <t < 3

" 1
pei.j) =@t —=1)p(i.j)+ (2 —2t)(m,n), ifz <t=l1

Then, p]: (i, j) is a point in P. Let us consider such p;é (i, j)’s for all pairs of alternatives (x;, x;),
and we denote a set of all p,;/ (i, j)sby p,:. Similarly, p,: s for all individuals other than k are defined.

Letp ; be a combination of p;; ’s for all individuals other than /, and define
H(p.1) = F(p_;. p1)
Then, this is a homotopy between F o i;(p—;, p;) and F o i;(p’;, pi).

Letz =< (1,2),(2,3) > + < (2,3),(3,1) > — < (1,2),(3,1) > be a cycle of P. By Pareto principle z
corresponds to the same cycle in Py by (F o A).. Since it is not a boundary cycle, we have (F o A), # 0.

Note: =z is obtained by substituting a; = 1, a4 = —1, a;o = 1 and 0 into all other coefficients of
an element of the chain group of P expressed in (Z.I). For this z to be a boundary of some 2-
dimensional simplex we must have by = b, = bg = 1 and b; = 0 for all other coefficients of dc, (P)
in (2.2). But then, bs, b4, b3, b7, bg, by, b1g, b11, b12, b1z must be 0, and the coefficient of o is 1.
Thus, z is not a boundary cycle.

For a pair of alternatives x; and x;, a preference profile, at which all individuals prefer x; to x; , is
denoted by (i, j)+1); a preference profile, at which they prefer x; to x;, is denoted by (i, j)(&77).
Similarly a preference profile, at which all individuals other than / prefer x; to x;, is denoted by
(, j)(_J;’+""’+); a preference profile, at which they prefer x; to x;, is denoted by (i, j)(__l’_""’_); a prefer-
ence profile, at which they are indifferent between x; and x;, is denoted by (7, j )g’o’"' 9 Anda preference

profile, at which the preferences of individuals other than / about x; and x; are not specified, is denoted
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2.3 The main results
From preliminary analyses in the previous section we will show the following lemma.

Lemma 2.3 1. If individual / is the dictator, we have

(F oif)e = (F o A).

that is, (F o i;)« and (F o A), are isomorphic.

2. If individual / is not a dictator, we have

(Foip)« =0

Proof 1. Consider three alternatives x1, x, and x3 and a preference profile p over these alternatives
such that the preferences of individuals other than / are represented by (1, 2)(_01’0"" ’0), (2, 3)2’0"" -0
and (1,3)2’0""’0), that is, they are indifferent about x;, x» and x3. If individual / is the dictator,

correspondences from his preference to the social preference by F o i; are as follows,
(1.2)y — (1.2), 2.1y — (2.1
2.3 —(2.3). 3.2y — (3.2)
(1,3 — (1,3), G. 1)y — 3.1
(1,2); and (2, 1); denote the preference of individual / about x; and x;. (2, 3);, (3,2); and so on are

similar. These correspondences are completely identical to the correspondences by F o A. Further,

since we assume that individuals other than / are indifferent about x;, x, and x3, correspondences

from the preferences of individual /, (1,2);, (2,3); and (1, 3);, to the social preference by F o i;
are also identical to the correspondences by F o A. Therefore, the homomorphism of homology
groups, (F o A), induced by F o A, and the homomorphism of homology groups, (F o i), which
is induced by F o i;, are identical (isomorphic), that is, (F o ij)« = (F o A)x.

2. Consider three alternatives x1, x, and x3 and a preference profile p over these alternatives such that
the preferences of individuals other than [ are represented by (1, 2)(_J;’+""’+), (2, 3)(_J;’+""’+) and
(1, 3)(_7+"" P If individual / is not a dictator, there exists a preference profile at which the social
preference about some pair of alternatives does not coincide with the strict preference of individual
I. Assume that when the preference of individual / is (1, 2), the social preference is (2, 1) or (2, 1).

Then, we obtain the following correspondence from the preference profile to the social preference.

(1,2)5 % % (1,2); — (2, D or (2.T)

By Pareto principle we have
(1,3)*F0 —(1,3)

Then, from transitivity we obtain

2,34 5 (3,2), — (2.3)

From Pareto principle we have
(1L.2)HFH — (1,2)
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From transitivity we obtain the following correspondence.
(1,3) 5P 5 3,1, — (1,3)
Further, from Pareto principle we have
(2.3)7) — (3,2)
From transitivity we get the following correspondence.
(1,20 5 (2, 1) — (1,2)

From these results we find that at the preference profile p, where the preferences of individuals other
than [ are represented by (1, 2)(_J;’+’"' (2, 3)(_j;’+""’+) and (1, 3)(_J;’+""’+), correspondences from
the preference of individual / to the social preference by F o i; are obtained as follows.

(1,2); — (1,2), 2,1); — (1,2)

2,3)) — (2,3), (3,2); — (2,3)

From these correspondences with transitivity and IIA we find the following fact.
When individual / is indifferent between x; and x3, the society prefers x; to x3, that is, we

obtain the following correspondence.

(1,3); — (1,3)

This is derived from two correspondences (1,2); — (1,2) and (3,2); — (2,3). Thus, the fol-
lowing four sets of correspondences are impossible because the correspondences in each set are not
consistent with (1,3); — (1, 3).
(@ (1,2) — (1,2), 2,3); — (2.3)
b) (1,2); — (1,2), 2,3); — (3,2)
© (1.2 — 2.1, 2.3) — (3.2)
(D (1,2) — 2. 1), (2,3 — (2,3)
And, we have the following five cases. They are consistent with the correspondence (1, 3); —> (1, 3).
() Case (i): (1,2); — (1,2), (2,3) — (2,3)
(b) Case (ii): (1,2); — (1,2), (2,3); — (2.3)
(¢) Case (iii): (1,2); — (1,2), (2,3); — (2.3)
(d Case (iv): (1,2); — (1,2), (2,3); — (3.2)
(e) Case (v): (1,2); — (2.1), (2,3); — (2.3)
We consider each case in detail.
() Case (i): (1,2) — (1,2), (2,3) — (2,3)
The vertices mapped by F o i; to the social preference from the preference of individual / span

the following five simplices.
<(1,2),(2,3) >, <(1,2),(1,3) >, <(2,3),(1,3) >, <(1,2),(2,3) >,
<(1,2),(1,3) >

Then, an element of the 1-dimensional chain group is written as

c1 =ay < (1,2),(2,3) > +as < (1,2),(1,3) > +a3 < (2,3),(1,3) >
+ag < (1,2),(2,3) > +as < (1,2),(1,3) >, a; € Z
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(b)

The condition for an element of the 1-dimensional chain group to be a cycle is
dey =(—ay —az) < (1,2) > +(a1 —az +as) < (2,3) > +(ar + az +as) < (1,3) >
+ (-as—as) < (1,2) >=0
From this
—a1—a,=0,a1—a3+as4=0,a,+az3+as=0, —ag—as =0
are derived. Then, we obtain a, = —a1, as = —ags, a3 = a; + a4. Therefore, an element of the
1-dimensional cycle group, Z1, is written as follows.
z1 =a1 < (1,2),2,3) > —a; < (1,2),(1,3) > +(a; +a4) < (2,3),(1,3) >
+as < (1,2).(2.3) > —as < (1,2),(1,3) >
On the other hand, the vertices span the following 2-dimensional simplices.

<(1,2),(2,3),(1,3) >, < (1,2),(2,3),(1,3) >

Then, an element of the 2-dimensional chain group is written as

2 =by < (1,2),(2.3).(1,3) > +b, < (1,2).(2.3).(1.3) >, b € Z

And an element of the 1-dimensional boundary cycle group, By, is written as follows.

des =by < (1,2),(2,3) > —by < (1,2),(1,3) > +(b1 + b) < (2,3),(1,3) >
+ by < (1,2),(2.3) > =bs < (1,2),(1,3) >

Then, we find that Bj is isomorphic to Z;, and so the 1-dimensional homology group is trivial,
that is, we have proved (F oi;)« = 0.

Case (ii): (1,2) — (1,2), (2,3) — (2,3)

The vertices mapped by F o i; to the social preference from the preference of individual / span

the following five simplices.
<(1,2),(2,3) >, <(1,2),(1,3) >, <(2,3),(1,3) >, <(2,3),(1,2) >,
<(2,3),(1,3) >
Then, an element of the 1-dimensional chain group is written as
c1 =a; < (1,2),(2,3) > +ap < (1,2),(1,3) > +a3 < (2,3),(1,3) >
+as <(2,3),(1,2) > 4+as < (2,3),(1,3) >
The condition for an element of the 1-dimensional chain group to be a cycle is
dcy =(—a; —az +aq) < (1,2) > +(a; —az) < (2,3) > +(ap + as +as) < (1,3) >
+ (a4 —as) < (2.3) >=0
From this

—a1—az+as=0,a1—a3=0,a,+a3+a5=0, —ag—as =0
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©

are derived. Then, we obtain a3 = a1, ds = —aa, d» = as — a; Therefore, an element of the

I-dimensional cycle group, Z, is written as follows.
z1 =a; < (1,2),(2,3) > +(as —a1) < (1,2),(1,3) > +a; < (2,3),(1,3) >
+as < (1,2),(2,3) > —as < (1,2),(1,3) >
On the other hand, the vertices span the following 2-dimensional simplices.

< (1,2),(2,3),(1,3) >, < (2.3),(1,2),(1,3) >

Then, an element of the 2-dimensional chain group is written as

2 =b1 <(1,2),(2.3).(1,3) > +by < (2,3),(1,2),(1,3) >

And an element of the 1-dimensional boundary cycle group, By, is written as follows.
dcy =by < (1,2),(2,3) > +(by — b1) < (1,2),(1,3) > +b; < (2,3).(1,3) >
+b2 < (ﬁ)s(]az') > _bz < (ﬂ)s(]s3) >

We find that B; is isomorphic to Z, and so the 1-dimensional homology group is trivial, that
is, we have proved (F o i), = 0.

Case (iii): (1,2) — (1,2), (2,3) — (2.3)

The vertices mapped by F o i; to the social preference from the preference of individual / span

the following three simplices.
<(1,2),(2,3) >, <(1,2),(1,3) >, < (2,3),(1,3) >
Then, an element of the 1-dimensional chain group is written as
c1 =a1 <(1,2),(2,3) > +a» < (1,2),(1,3) > +a3 < (2,3),(1,3) >
The condition for an element of the 1-dimensional chain group to be a cycle is
dcr =(—a; —az) < (1,2) > +(a1 —a3) < (2,3) > +(a2 +a3) < (1,3) >=0

From this
—a1—a;=0,a1—a3=0,a,+az =0

are derived, and we obtain a, = —ay, az = a;. Therefore, an element of the 1-dimensional

cycle group, Z1, is written as follows.

zy =a; < (1,2),(2,3) > —a1 < (1,2),(1,3) > +a1 < (2,3),(1,3) >
On the other hand, the vertices span the following 2-dimensional simplex.
<(1,2),(2,3),(1,3) >
Then, an element of the 2-dimensional chain group is written as
c2 =b1 <(1,2),(2,3),(1,3) >
And an element of the 1-dimensional boundary cycle group, Bj, is written as follows.

dea =by < (1,2),(2,3) > —by < (1,2),(1,3) > +b1 < (2,3),(1,3) >

We find that B; is isomorphic to Z;, and so the 1-dimensional homology group is trivial, that

is, we have proved (F o ;). = 0.
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(d

(e)

Case (iv): (T,2) — (1,2), (2,3) — (3,2)
The vertices mapped by F o i; to the social preference from the preference of individual / span

the following five simplices.
<(1,2),(2,3) >, <(1,2),(1,3) >, <(2,3),(1,3) >, < (3,2),(1,2) >,
< (3,2),(1,3) >
Then, an element of the 1-dimensional chain group is written as
c1 =a; < (1,2),(2,3) > +as < (1,2),(1,3) > +as3 < (2,3),(1,3) >
+a4 <(3,2),(1,2) > +as < (3,2),(1,3) >

The condition for an element of the 1-dimensional chain group to be a cycle is

dey =(—ay —az +as) < (1,2) > +(a1 —az) < (2,3) > +(az +az +as) < (1,3) >
4+ (—a4 —as) < (3,2) >=0

From this
—ay—az+as4=0,a1—a3=0,a;+as+as =0, —ag—as =0
are derived, and we obtain az = aj, as = —a4, a» = a4 — a;. Therefore, an element of the
1-dimensional cycle group, Z1, is written as follows.
71 =a1 < (1,2),(2,3) > +(as —a1) < (1,2),(1.3) > +a; < (2,3),(1,3) >
4+a4 <(3,2),(2,3) > —a4 < (3,2),(1,3) >
On the other hand, the vertices span the following 2-dimensional simplices.

<(1,2),(2.3).(1,3) >, < (3,2),(1.2).(1,3) >

Then, an element of the 2-dimensional chain group is written as

c2=b1 <(1,2),(2,3),(1,3) > +b> < (3,2),(1,2),(1,3) >

And an element of the 1-dimensional boundary cycle group, By, is written as follows.

dcp =b; < (1,2),(2,3) > +(by — by) < (1,2),(1,3) > +b; < (2,3),(1,3) >
+ by < (3,2),(1,2) > —by < (3,2),(1,3) >

We find that B is isomorphic to Z;, and so the 1-dimensional homology group is trivial, that
is, we have proved (F o i), = 0.

Case (v): (1,2) — (2, 1), (2,3) — (2,3)

The vertices mapped by F o i; to the social preference from the preference of individual / span

the following five simplices.
<(1,2),(2,3) >, <(1,2),(1,3) >, <(2,3),(1,3) >, <(2,1),(2,3) >,
<(2,1),(1,3) >

Then, an element of the 1-dimensional chain group is written as

c1 =a; < (1,2),(2,3) > +a < (1,2),(1,3) > +as3 < (2,3),(1,3) >
+ag < (2,1),(2,3) > +as < (2. 1),(1,3) >
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The condition for an element of the 1-dimensional chain group to be a cycle is

dcy =(—a; —az) < (1,2) > +(a1 —az +aq) < (2,3) > +(az +az +as) < (1,3) >
+(~a4—as) < (2,1)>=0

From this

—ay—a;=0,a1—a3+as4=0,a3+az+as =0, —ag—as =0

are derived, and we obtain a, = —ay, as = —aga, as = a; + as. Therefore, an element of the

1-dimensional cycle group is represented as follows.

71 =a; < (1,2),(2,3) > —a; < (1,2),(1,3) > +(a; + as) < (2,3),(1,3) >
+a4<(2,1),2,3) > —as < (2,1),(1,3) >

On the other hand, the vertices span the following 2-dimensional simplices.

<(1,2),(2.3),(1,3) >, < (2,1).(2.3).(1,3) >

Then, an element of the 2-dimensional chain group is written as

c2 =01 <(1,2),(2,3),(1,3) > +b> < (2,1),(2,3),(1,3) >

And an element of the 1-dimensional boundary cycle group, By, is written as follows.

der =b1 < (1,2),(2,3) > —b1 < (1,2),(1,3) > +(b1 + b2) < (2,3),(1,3) >
+ by <(2,1),(2,3) > —by < (2,1),(1,3) >

We find that B; is isomorphic to Z;, and so the 1-dimensional homology group is trivial, that
is, we have proved (F o ;). = 0.
We have completely proved (F o i;)« = 0 in all cases.
O

From these arguments and (F o A), # 0 there exists the dictator about x1, x, and x3. Let individual /
be the dictator. Interchanging x3 with x4 in the proof of this lemma, we can show that he is the dictator
about xp, x; and x4. Similarly, we can show that he is the dictator about x5, x, and x4, he is the dictator

about x5, xg and x4. After all he is the dictator about all alternatives, and hence we obtain

Theorem 2.1 (The Arrow impossibility theorem) There exists the dictator for any social welfare function

which satisfies transitivity, Pareto principle and ITA.

2.4 Concluding remarks

We have shown the Arrow impossibility theorem when individual preferences are weak orders under
the assumption of free-triple property using elementary concepts and techniques of algebraic topology, in
particular, homology groups of simplicial complexes and homomorphisms of homology groups induced
by simplicial maps.

Our approach may be applied to other problems of social choice theory such as Wilson’s impossibility
theorem (Wilson! (1972), the Gibbard-Satterthwaite theorem (Gibbard! (1973 and [Satterthwaitel (1975))),
and Amartya Sen’s liberal paradox (Sen! (1979)).
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Chapter 3

A topological proof of Eliaz’s unified
theorem of social choice theory

Recently|Eliaz (2004) has presented a unified framework to study (Arrovian) social welfare functions
and non-binary social choice functions based on the concept of preference reversal. He showed that
social choice rules which satisfy the property of preference reversal and a variant of the Pareto
principle are dictatorial. This result includes the Arrow impossibility theorem (Arrowl (1963)) and
the Gibbard-Satterthwaite theorem (Gibbard! (1973)), |[Satterthwaitel (1975)) as its special cases. We
present a concise proof of his theorem using elementary concepts of algebraic topology such as

homomorphisms of homology groups of simplicial complexes induced by simplicial mappings1l.

3.1 Introduction

Recently [Eliaz (2004) has presented a unified framework to study (Arrovian) social welfare functions
and non-binary social choice functions based on the concept of preference reversal. The preference reversal
property is a condition (according to the expression in|Eliaz (2004)) that if social relation (given by a so-
cial choice function or a social preference) between any two alternatives has been reversed, then someone
must have exhibited the same reversal in his preference. He showed that social choice rules which satisfy
the property of preference reversal and a variant of the Pareto principle are dictatorial. This result in-
cludes the Arrow impossibility theorem (Arrow! (1963)) and the Gibbard-Satterthwaite theorem (Gibbard
(1973)), Satterthwaite| (1975)) as its special cases. We present a concise proof of his theorem using elemen-
tary concepts of algebraic topology such as homomorphisms of homology groups of simplicial complexes
induced by simplicial mappings.

Topological approaches to social choice problems have been initiated by|Chichilnisky (1980). Her main
result is an impossibility theorem that there exists no continuous social choice rule which satisfies unanimity
and anonymity. This approach has been further developed by |Chichilnisky| (1979)), (1982), (Candeal and
Indurain| (1994), [Koshevoy| (1997), [Lauwers| (2004)), |[Weinberger (2004), and so on. On the other hand,
Baryshnikov|(1993) and (1997) have presented a topological approach to the Arrow impossibility theorem

(or general possibility theorem) in a discrete framework of social choicd®d. Our research is in line with the

*I This chapter is based on my paper of the same title published in Applied Mathematics and Computation, Vol.
176, No. 1, pp. 83-90, 2006, Elsevier.
*2 About surveys and basic results of topological social choice theories, see[Mehtal (1997) and [Lauwers| (2000).
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studies of topological approaches to discrete social choice problems initiated by him. In the next section
we present expressions of binary social choice rules by simplicial complexes and simplicial mappings. In

Section 3.3 we will prove the main results of this chapter.

3.2 The model

There are m alternatives of a social problem, x1, x5, -+, X (m = 3), and n individuals (n = 2). The set
of alternatives is denoted by A. m and n are finite integers. Individual preferences over these alternatives
are complete, transitive and asymmetric. Individual i’s preference is denoted by P;. x; P; x; means that he
prefers x; to x;.

A social choice rule which we will consider according to [Eliaz (2004) is a rule that determines a social
binary relation about each pair of alternatives corresponding to a combination of individual preferences.
It may not be complete. We call such a social choice rule a binary social choice rule. 1t is abbreviated as
BCR. We assume the universal (or unrestricted) domain condition for social binary choice rulesl. We call
a combination of individual preferences a profile. The profiles are denoted by p, p’ and so on. Individual
i’s preference at p’ is denoted by P/, and so on. A social binary relation generated by a BCR is denoted
by R. We call it also a BCR. Let x; and x; be two distinct alternatives. x; Rx; means that x; relates to x;
according to BCR R. On the other hand x;” Rx; means that x; does not relate to x; according to BCR R.
A BCR at a profile p is denoted by R, a BCR at p’ is denoted by R’, and so on.

Any BCR R is required to satisfy the following conditions.

Existence of a best alternative (BA) There exists an alternative x; € A such that x; Rx; for all x; €
A\ {x;}. There may be multiple best alternatives.

Acyclicality (AC) For every three alternatives x;, x; and x in A if x; Rx; and x;” Rx;, then x;”Rx;.

Pareto efficiency (PAR) For every two alternatives x; and x; in A if all individuals prefer x; to x;, then
either “x; Rx; and xj._‘in”, or “x; and x; are not related according to R (x;” Rx; and X Rx;)”.

Preference reversal (PR) For every two alternatives x;and x; in A4 if x; Rx;, X7 Rx; but x; R'x;, then
there exists (at least) one individual i such that x; P;x; and x; P/x;.
Dictator is defined as follows.

Dictator If, there exists an individual i such that for every pair of alternatives x; and x; the social relation

is X7 Rx; whenever he prefers x; to x;, then he is the dictator of R.
As proved in Observation 1 of [Eliaz| (2004) AC is equivalent to the following Transitivity.
Transitivity (T) For every three alternatives x;, x; and xi in A if x; Rx; and x; Rxy, then x; Rx.

Proof. 1. AC— T: Assume that x; Rx;, x; Rx; but x;"Rxi. Then, from x; Rx; and x;"Rx; AC im-
plies x;" Rx;. It is a contradiction.
2. T—> AC: Assume that x; Rx;, x;” Rx; but xz Rx;. Then, from xx Rx; and x; Rx; T implies xz Rx;.
It is a contradiction.
O

As noted by |[Eliaz| (2004) if a BCR satisfies BA, AC and the Completeness (Condition C) (x; Rx; or

*3 The universal domain condition means that the domain of individuals preferences for social binary choice rules
is never restricted.
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X;j Rx;), then it is an Arrovian social welfare function. In this interpretation AC means the transitivity of
strict social preferenced*™¥. [Eliaz (2004) showed that if a social welfare function satisfies BA, AC, PAR, C
and Arrow’s condition of independence of irrelevant alternatives, then it satisfies PR. If a BCR satisfies C,
xj“ Rx; is equivalent to x; Rx;. Thus, the dictator in the above definition is the dictator for an Arrovian
social welfare function.

On the other hand, if the unique alternative x; satisfies x; Rx; for all x; € A\ {x;} and all alternatives
other than x; are not mutually related according to a BCR R, then it is a social choice function which is a
social choice rule that chooses one alternative corresponding to each profile. To be precise a social choice
function chooses one alternative corresponding to a profile of reported preferences of individuals. If a social
choice function does not give any incentive to every individual to report a preference which is different
from his true preference, then it is strategy-proof. It was shown by|Eliaz|(2004) that a strategy-proof social
choice function satisfies PR. If there exists the unique best alternative x; for a BCR, then x;Rxl- means
that x; is not chosen by the social choice function derived from this BCR, and the dictator in the above
definition is the dictator for the social choice function. [Eliaz (2004) showed the theorem that if a BCR
satisfies BA, AC, PAR and PR, it has the dictator. Then, the Arrow impossibility theorem that there
exists the dictator for any social welfare function which satisfies BA, AC, C, PAR and the independence
of irrelevant alternatives under the universal domain condition, and the Gibbard-Satterthwaite theorem
that there exists the dictator for any social choice function which is onto (surjection) and strategy-proof
under the universal domain condition are the special cases of his theorem.

PAR with BA implies the following condition®3.

Strong Pareto efficiency (SPAR) For every alternative x; if all individuals prefer x; to all other alterna-

tives, then we have x; Rx; and fox,- forall x; € A\ {x;}.

Now we consider topological expressions of individual preferences. We draw a circumference which
represents the set of individual preferences by connecting m! vertices vy, vz, - -+, Uyt by arcdd. For example,

in the case of four alternatives, these vertices mean the following preferences.
vy @ (1234), vy 1 (1243) v3 : (1423), va 1 (1432), vs : (1342), v : (1324)
v7 1 (2134), vg : (2143) vg : (2413), v : (2431), vy1 : (2341), v13 : (2314)
v13 : (3124), v14 : (3142) v15 1 (3412) v16 @ (3421), v17: (3241), v : (3214)
V19 : (4123), v : (4132) v @ (4312) vy @ (4321), vas @ (4231), vaq : (4213)
We denote a preference such that an individual prefers x; to x; to x3 to x4 by (1234), and so on. Notations

for the cases with different number of alternatives are similar. Generally v; ~ v(,—1) represent preferences

such that the most preferred alternative for an individual is X1, Vgn—1)1+1 ~ V2(n—1)! represent preferences

*4 From Lemma 1 of[Baryshnikov| (I1993) we know that if individual preferences are strict orders, then the social
preference is also a strict order under the transitivity, the Pareto principle and the independence of irrelevant
alternatives.

*5 This term SPAR is not defined in [EliaZ (2004).

*6 m1 denotes factorial of m.

m
mi=]]Jj=mm-1)m=-2)x-x2x1
j=1
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such that the most preferred alternative for an individual is x,, and so on. In particular v; denotes a
preference such that an individual prefers x; to x; to x3 to -+ to x,,. It is denoted by (123 ---m).

Denote this circumference by S!. S! in the case of three alternatives is depicted in Figure 1. The set
of profiles of the preferences of n individuals is represented by the product space S! x --- x S! (n times).
It is denoted by (Sil)”. The 1-dimensional homology group of Sl.1 is isomorphic to the group of integers
Z, that is, H{(S}) =~ Z. And the 1-dimensional homology group of (S})" is isomorphic to the direct
product of n groups of integers Z”", that is, we have H; ((Sl.l)”) ~ 7", It is proved, for example, using the
Mayer-Vietoris exact sequenced*/.

The social binary relation generated by a BCR is also represented by a circumference depicted in Figure
2. This circumference is drawn by connecting three vertices, wy, w, and w3 by arcs. These vertices mean

the following social binary relations.

1. wo: binary relations such that x Rx; and x;"Rx, forall x; € 4\ {x2}.
2. ws3: binary relations such that x3 Rx; and x; Rx3 forall x; € A\ {x3}.

3. wjy: all other social binary relations.

We call this circumference S!. The 1-dimensional homology group of S! is also isomorphic to Z, that
is, H{(S') = Z.

Binary social choice rules are simplicial mappings. Binary social choice rules are denoted by
/o (SH" — S'. Two adjacent vertices of S} span a l-dimensional simplex. And any
pair of two vertices of S! spans a 1-dimensional simplex. Thus, f is a simplicial mapping, and we

can define the homomorphism of homology groups induced by f.

We define an inclusion mapping from S} to (S})" by A : S! — (S!)" under the assumption that all
individuals have the same preferences, and define an inclusion mapping when the profile of preferences of

individuals other than one individual (denoted by i) is fixed at some profile by i; : S} — (S!)". The

*7 About homology groups and the Mayer-Vietoris exact sequences we referred to [Tamural (I970) and [Komiya
2001).
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homomorphisms of homology groups induced by these inclusion mappings are as follows.
Av: Z—7": h—> (hh,--- ,h), heZ

iix: Z—72": h— (0,---,0,h,0,---,0), h € Z (only the i-th component is /)

From these definitions we obtain the following relation about A, and i;4 at any profile.

n
A= i 3.1)
i=1
Let us denote the homomorphism of homology groups induced by f by fx : (Z)" — Z.

Binary social choice rules for different profiles are homotopic. f for a fixed profile of preferences of
individuals other than i (denoted by f|,_;) and f for another fixed profile of their preferences
(denoted by fy i) are homotopic. Thus, the homomorphisms of homology groups induced by
them are isomorphic. Denote two profiles of individuals other than i by p_; and p’_;. Then, the

homotopy between f|p_; and f1, is

. tf|p_,‘ + (1 _t)f|pLi
e =0y

O=r=1

Jt

It is well defined since f'|,_, and f|, =~ are not anti-podal.

1

The composite function of i; and f is denoted by f oi; : S} —> S, and its induced homomorphism
of homology groups satisfies (f 0i;)« = fx oi;x, for alli. The composite function of A and f is denoted
by foA: S! — S, and its induced homomorphism of homology groups satisfies (f 0 A)x = fx 0 Ax.
From (3.I)) we obtain

(folA)w=) (foii)s (32)
i=1

3.3 The main results
In this section we will prove the following theorem by |[Eliaz| (2004).

Theorem 3.1 There exists the dictator for any BCR which satisfies BA, AC, PAR and PR.
First we show the following lemma which will be used below.

Lemma 3.1 Suppose that a BCR satisfies BA, AC, PAR and PR, and has no dictator. When the preference
of one individual (denoted by i) is (234 - - - m1), and the preferences of all other individuals are vy, then we

have

x1Rx; and xj_‘Rxl forall x; € A\ {x1,x2}

Proof. Step 1:
Note that v; represents a preference (123 ---m). By PAR we have

x2Rx; (or x; Rxj) and x;"Rx; forall x; € A\ {x1, x2} (3.3)
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By BA there are the following three cases about x; and x5,

1. Case 1: xp Rx; and x" Rx».
2. Case 2: x; Rx» and x; Rx;.

3. Case 3: x; Rx, and x, Rx;.

It will be proved that in Case 1 individual i is the dictator. In Step 1 we consider this case. By PR we have
X1 Rx> so long as individual i prefers x to x;. Then, we say that individual i is decisive for x, against x;.

Let x; and x (xg # x;) be alternatives other than x; and x5, and consider the following profile.

1. Individual i prefers xj to x; to x; to x; to all other alternatives.

2. Other individuals prefer x; to x; to xi to x5 to all other alternatives.
By PR we have x]"Rx>. And by PAR we have

1. x1Rx; (or x]'Rx;) and xj"Rxl, and x1 Rx; (or x"Rx;) and x;"Rx; for all x; € A\ {x1, x2, x;, Xg }.

2. xg Rxz (or x;” Rxz) and x5  Rxy, and xg Rx; (or x;” Rx;) and x;" Rxy for all x; € A\ {x1, x2, x;, xx }.

BA and AC imply that we have xx Rx; and x;"Rxy for all x; € A\ {xx . Then, by PR we have X7 Rxp
so long as individual i prefers xx to x;, and so individual i is decisive for x; against x;. Note that x; and

xy are arbitrary. Next consider the following profile.

1. Individual i prefers x5 to xi to x; to all other alternatives.

2. Other individuals prefer x; to x; to xi to all other alternatives.
By PR we have x"Rxx. And by PAR we have
x2 Rxy (or x3'Rxy) and x;” Rxz, and xa Rx; (or x5 Rx;) and x;"Rx; for all x; € A\ {x2, x;, xx }.

BA and AC imply that we have x, Rx; and x;"Rx; for all x; € A\ {x2}. Then, by PR we have X7 Rxz so
long as individual i prefers x, to x;, and so individual i is decisive for x, against x;. Next consider the

following profile.

1. Individual i prefers xi to x; to x; to all other alternatives.

2. Other individuals prefer x; to x; to xi to all other alternatives.
By PR we have x"Rxx. And by PAR we have
Xj Rx, (or x;sz) and x;'Rx;, and x; Rx; (or xj_'Rxl) and x;"Rx; forall x; € A\ {x2, x;, X }.

BA and AC imply that we have xx Rx; and x;” Rxy for all x; € A\ {x;}. Then, by PR we have x;' Rxx so
long as individual i prefers x; to x5, and so individual i is decisive for x against x,. By similar procedures
we can show that individual i is decisive for x; against x;, and is decisive for xj against x;. Finally consider

the following profile.

1. Individual i prefers x; to xi to x5 to all other alternatives.

2. Other individuals prefer x, to x; to xi to all other alternatives.

8 1f X| Rx2 and x5 Rx1, then there exists no best alternative.
*) BA implies xj Rx; for all x; € A\ {xz}, and from AC with Xy Rxz, x;"Rx1, x5’ Rxy and x;"Rxy (x; € A \
{x1,x2, x;, X }) we have x;” Rxy forall x; € A\ {xz}.
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By PR we have x5’ Rxy. And by PAR we have
x1 Rxy (or xi"Rxy) and x;”Rx1, and x1 Rx; (or x"Rx;) and x;"Rxy forall x; € 4\ {x1, x2, xx}.

BA and AC imply that we have x; Rx; and x;"Rx; for all x; € A4\ {x1}. Then, by PR we have x;’Rx; so
long as individual i prefers x; to x,, and individual i is decisive for x; against x,. Therefore, individual i
is the dictato®1.

Step 2:
Next let us consider Case 2 and 3. From (3.3) we have X, Rxz for all x; € A\ {x1,x2}. Then in both
Case 2 and 3, x1 Rx, and AC imply

x; Rxy forall x; € A\ {x1,x2}

By BA in Case 2 we obtain
x1Rx;j and x;"Rx; forall x; € A\ {x1}.

And in Case 3 we havél

X1Rx2, x2Rx1, x1Rx; and x;"Rx; forall x; € A\ {x1, x2}. (3.4)

Therefore, we get the conclusion of this lemma. O
By SPAR we obtain the correspondences from the vertices of Si1 to the vertices of S! by f o A as follows.

V1 ~ V-1 — W1, Vm—1)14+1 ~ V2(m—1)! — W2, V2(m—-1)!14+1 ™~ U3(m—1)! —> W3

All other vertices correspond to wy. Sets of 1-dimensional simplices included in S! which are 1-

dimensional cycles are only the following z and its counterpart —z.

Z =<0V, >4+ <VU,03 >+ 4 < Upl—1,Um! > + < Uy, V1 >
Since Si1 does not have a 2-dimensional simplex, z is a representative element of homology classes of Sil.
z is transferred by (f o A) to the following z’.

=< wi,wy >+ < Wy, w3 >+ < ws, w; >

This is a cycle of S!. Therefore, we have

(fodl) #0 (3.5)
Now we show the following lemma.

Lemma 3.2 If a BCR satisfies BA, AC, PAR and PR, and has no dictator, then we obtain

(foij)x =0 foralli (3.6)

*10 We can show that individual i is the dictator in Case 1 when there are only three alternatives by similar proce-
dures.
*I1 By BA we obtain

x1Rxj forall x; € A\ {x1}, or xaRx; forall x; € A\ {x2}

Then, AC or T(Transitivity) implies (3.4).
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Proof. By SPAR when the preference of every individual other than one individual (denoted by 7) is fixed
at vy, the correspondences from the preference of individual i to the social binary relation from v; to

V(m—1) are as follows.
V1 ~ Vm-1)! — W1

Lemma [3.Tlimplies that the correspondence from (234 ---m1) to the social binary relation is as follows.
(234---ml) — w;, and we have x| Rx;, foxl forall x; € A\ {x1,x2}
Then, PR implies that x5 is never the unique best alternative for BCR so long as the most preferred alter-

native for all individuals other than i is x; regardless of the preference of individual i, and so the preference

of individual i corresponds to w; or w,. Thus, we obtain the following correspondences.
V(m—1)141 ~ Um! —> W1 OT W2
Sets of 1-dimensional simplices included in S which are 1-dimensional cycles are only the following z
and its counterpart —z.
Z=<UV1,U0p >+ <Uz,U3 >+ "+ < Upl—1, Un! >+ < U1, U1 >
Since S does not have a 2-dimensional simplex, z is a representative element of homology classes of S}.
z is transferred by (f o i;)« to the following z’.

=< wi,wy >+ <wy,w; >=0o0rz =<w,w; >=0

Therefore, we have (f oi;), = 0 foralli. O

The conclusion of this lemma contradicts (3.2) and (3.3). Therefore, we have shown Theorem 3.1l We
call the property expressed in (3.6) the non-surjectivity of individual inclusion mappings. Then, Theorem

[3.1lis a special case of the following theorem.

Theorem 3.2 There exists no binary social choice rule which satisfies SPAR and the non-surjectivity of

individual inclusion mappings.

From (3.3) SPAR implies the surjectivity of the diagonal mapping, (f o A)s # 0, for binary social choice

rules. Thus, this theorem is rewritten as follows.

There exists no binary social choice rule which satisfies the surjectivity of the diagonal mapping and

the non-surjectivity of individual inclusion mappings.

3.4 Concluding remarks

In[Baryshnikov| (1997) he said, “the similarities between the two theories, the classical and topological
ones, are somewhat more extended than one would expect. The details seem to fit too well to represent just
an analogy. I would conjecture that the homological way of proving results in both theories is a ‘true’ one
because of its uniformity and thus can lead to much deeper understanding of the structure of social choice.
To understand this structure better we need a much more evolved collection of examples of unifying these

two theories and I hope this can and will be done.” This chapter is an attempt to provide such an example.
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Chapter 4

On the topological equivalence of the
Arrow impossibility theorem and
Amartya Sen’s liberal paradox

We will show that the Arrow impossibility theorem for binary social choice rules that there exists
no binary social choice rule which satisfies transitivity, Pareto principle, independence of irrelevant
alternatives (IIA), and has no dictator, and Amartya Sen’s liberal paradox for binary social choice
rules that there exists no binary social choice rule which satisfies acyclicity, Pareto principle and the
minimal liberalism are topologically equivalent using elementary tools of algebraic topology such
as homomorphisms of homology groups of simplicial complexes induced by simplicial mappings.
Our research is in line with the studies of topological approaches to discrete social choice problems
initiated by |Baryshnikov| (1993). Also we will show that these two theorems are special cases of
the theorem that there exists no binary social choice rule which satisfies Pareto principle and the

non-surjectivity of individual inclusion mappings=l.

4.1 Introduction

Topological approaches to social choice problems have been initiated by|Chichilnisky (1980). Her main
result is an impossibility theorem that there exists no continuous social choice rule which satisfies unanimity
and anonymity. This approach has been further developed by |Chichilnisky| (1979)), (1982), (Candeal and
Indurain| (1994), [Koshevoy| (1997), [Lauwers| (2004)), |[Weinberger (2004), and so on. On the other hand,
Baryshnikov|(1993) and (1997) have presented a topological approach to the Arrow impossibility theorem
(or general possibility theorem) in a discrete framework of social choicd*2.

We will show that the Arrow impossibility theorem for binary social choice rules that there exists no
binary social choice rule which satisfies transitivity, Pareto principle, independence of irrelevant alterna-
tives (ITA), and has no dictator, and Amartya Sen’s liberal paradox for binary social choice rules that
there exists no binary social choice rule which satisfies acyclicity, Pareto principle and the minimal liber-

alism are topologically equivalent using elementary tools of algebraic topology such as homomorphisms

*I This chapter is based on my paper of the same title published in Applied Mathematics and Computation, Vol.
181, No. 2, pp. 1490-1498, 2006, Elsevier.
*2 About surveys and basic results of topological social choice theories, see[Mehtal (1997) and [Lauwers| (2000).
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of homology groups of simplicial complexes induced by simplicial mappings. Also we will show that these
two theorems are special cases of the theorem that there exists no binary social choice rule which satisfies
Pareto principle and the non-surjectivity of individual inclusion mappings. Our research is in line with the
studies of topological approaches to discrete social choice problems initiated by |Baryshnikov|(1993).

In the next section we present expressions of binary social choice rules by simplicial complexes and

simplicial mappings. In Section 4.3 we will prove the main results of this chapter.

4.2 The expressions of social choice problems by simplicial
complexes and simplicial mappings

There are m alternatives of a social problem, x1, X3, - -+, X5 (m = 3), and n individuals (n = 2). m and n
are finite integers. Individual preferences over these alternatives are complete, transitive and asymmetric.

A social choice rule which we will consider is a rule that determines a social preference about each pair
of alternatives corresponding to a combination of individual preferences. We call such a social choice rule
a binary social choice rule. The social preference should be complete, but may be or may not be transitive.
As usual we assume the universal domain condition for social choice rules. We call a combination of
individual preferences a profile. The profiles are denoted by p, p’ and so on.

‘We will consider two social choice problems about binary social choice rules.

1. (Amartya Sen’s liberal paradox) The liberal paradox by Amartya Sen (Sen| (1979))) states that there
exists no binary social choice rule which satisfies acyclicity, Pareto principle and the minimal liber-
alism. The means of these conditions are as follows.

Acyclicity If the society (strictly) prefers x; to x;, and (strictly) prefers x; to xi, then it should
prefer x; to xi or be indifferent between them. It is weaker than transitivity which requires that
the society (strictly) prefers x; to xi.

Pareto principle If all individuals prefer an alternative x; to another alternative x;, then the
society prefers x; to x;.

Minimal liberalism At least two individuals, denoted by A and B, are decisive for some pairs of
alternatives in both directions in the sense described in the following Assumption 1.

In what follows as the condition of the minimal liberalism we assume

Assumption 1 If individual A prefers x; to x3 (or prefers x3 to x;), then the society prefers x;
to x3 (or prefers x3 to x1). And if individual B prefers x, to x4 (or prefers x4 to x,), then the

society prefers x, to x4 (or prefers x4 to x3).

Other individuals are not necessarily decisive. We can proceed the arguments in a similar manner
based on other assumptions about the minimal liberalism by permuting or renaming alternatives.
We abbreviate the problem of the liberal paradox as LP.

2. (The Arrow impossibility theorem) The Arrow impossibility theorem (Arrow! (1963)) states that there
exists no binary social choice rule which satisfies transitivity, Pareto principle and independence of
irrelevant alternatives (IIA), and has no dictator, or in other words there exists the dictator for any
binary social choice rule which satisfies transitivity, Pareto principle and IIA. The dictator for a
binary social choice rule is an individual such that whenever he (strictly) prefers one alternative

(denoted by x) to another alternative (denoted by y), the society also (strictly) prefers x to y. The
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meanings of two conditions, transitivity and 1A, are as follows.

Transitivity If the society prefers x; to x;, and prefers x; to xi, then the society should prefer x;
to xg.

Independence of irrelevant alternatives (IlA) The society’s preference about any pair of two
alternatives depends only on individual preferences about these alternatives.

We abbreviate the problem of the Arrow impossibility theorem as AR. Pareto principle for AR is

the same as that for LP.

We draw a circumference which represents the set of individual preferences by connecting m! vertices
V1, V2, ***, Upt DY arc3. For example, in the case of four alternatives, these vertices mean the following

preferences.
v1 : (1234), vy @ (1243) v3 1 (1423), v4 @ (1432), vs @ (1342), ve : (1324)
v7 1 (2134), vg : (2143) vo : (2413), vig : (2431), v11 : (2341), viz : (2314)
v13 ¢ (3124), vi4 : (3142) v15 1 (3412) v16 @ (3421), v17: (3241), v : (3214)

V19 (4123), Voo - (4132) V21 (4312) Vg2 (4321), V23 (4231), Vo4 (4213)

We denote a preference such that an individual prefers x; to x; to x3 to x4 by (1234), and so on. Notations
for the cases with different number of alternatives are similar. Generally vi ~ v(,—1) represent preferences
such that the most preferred alternative for an individual is x1, Vgn—1)1+1 ~ V2(n—1)! Tepresent preferences
such that the most preferred alternative for an individual is x,, and so on. And v; is a preference such
that an individual prefers x; to x» to x3 to -+ to xp,. It is denoted by (123 ---m). vgn—1)141 is a preference
such that an individual prefers x, to x; to x3 to x4 to - -+ to x,,, which is denoted by (2134 ---m).

Denote this circumference by S!. S! in the case of three alternatives is depicted in Figure 1. The set
of profiles of the preferences of n individuals is represented by the product space S} x -+ x S (n times).
It is denoted by (Sl.l)". The 1-dimensional homology group of Si1 is isomorphic to the group of integers
Z, that is, H(S!) = Z. And the 1-dimensional homology group of (S!)" is isomorphic to the direct
product of n groups of integers Z", that is, we have H 1((Si1)") >~ 7Z". It is proved, for example, using the
Mayer-Vietoris exact sequences™.

The social preference is also represented by a circumference depicted in Figure 2. This circumference
is drawn by connecting three vertices, w, w, and ws by arcs. For LP these vertices mean the following

social preferences.

1. wjy: social preferences such that the society prefers x4 to all other alternatives.
2. wjs: social preferences such that the society prefers x3 to all other alternatives.

3. wy: all other social preferences.

Similarly, for AR these vertices mean the following social preferences.

*3 m! denotes factorial of m.

m
ml=[]j=mm-1)m=-2)x-x2x1
j=1

* About homology groups and the Mayer-Vietoris exact sequences we referred to [Tamural (I970) and [Komiya
@001).
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1. wy: social preferences such that the society prefers x4 to all other alternatives.
2. wjs: social preferences such that the society prefers x3 to all other alternatives.

3. wjy: all other social preferences.

That is, the vertices w; and w3 denote the same social preferences for LP and AR, and the set of social
preferences expressed by w, for AR is the proper subset of the set of social preferences expressed by w,
for LP because the social preference are required to satisfy transitivity in AR, but in LP we require only
acyclicity.

We call this circumference S!. The 1-dimensional homology group of S! is also isomorphic to Z, that
is, Hi(S!) = Z.

Binary social choice rules are simplicial mappings. Binary social choice rules in AR and LP are de-
noted by f : (S})" — S'. Two adjacent vertices of S;' span a 1-dimensional simplex. And any
pair of two vertices of S! spans a 1-dimensional simplex. Thus, f is a simplicial mapping, and we

can define the homomorphism of homology groups induced by f.

We define an inclusion mapping from S/ to (S!)" by A : S} — (S!)" under the assumption that all
individuals have the same preferences, and define an inclusion mapping when the profile of preferences of
individuals other than one individual (denoted by 7) is fixed at some profile by i; : Sl.1 — (Sil)”. The

homomorphisms of homology groups induced by these inclusion mappings are as follows.
Av: Z—72": h—> (hh,--- h), heZ

lix: Z— 72" : h— (0,---,0,h,0,---,0), h € Z (only the i-th component is /)

From these definitions we obtain the following relation about A, and ;4 at any profile.
n
i=1

Let the homomorphism of homology groups induced by f be fx : (Z)" — Z.

Binary social choice rules for different profiles are homotopic. f for a fixed profile of the preferences
of individuals other than i (denoted by f|,_,) and f for another fixed profile of the preferences of
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individuals other thani (denoted by f /|, . ) are homotopic. Thus, the homomorphisms of homology

groups induced by them are isomorphic. Denote two profiles of individuals other than i by p—; and
. tflh_; +A=0 Sl .

p’_;. Then, the homotopy between f,_, and Sl is fi = m O=r=1).Itiswell

defined since f'[,_, and f[, , are not anti-podal.

The composite function of i; and f is denoted by f oi; : S} —> S, and its induced homomorphism
of homology groups satisfies (f 0i;)« = f« oi;«, for all i. The composite function of A and f is denoted
by foA: S!' — S, and its induced homomorphism of homology groups satisfies (f 0 A)x = fx 0 Ay.
From (4.1)) we obtain

n
(foA)w=) (foii)s (4.2)

i=1

4.3 The main results
For binary social choice rules in AR we define the following concept.

Weak monotonicity For two alternatives x; and x;, suppose that at profile p the society prefers x; to
x;. And suppose that individuals, who prefer x; to x; at p, prefer x; to x; at another profile p’.

Then, the society prefers x; to x; at p’.
We show the following result.

Lemma 4.1 Any binary social choice rule in AR which satisfies transitivity, Pareto principle and I1IA

satisfies the weak monotonicity.

Proof. We use notations in the definition of the weak monotonicity. Let x; be an arbitrary alternative
other than x; and x;.

Suppose that individuals, who prefer x; to x; at p, prefer x; to x; to xj at another profile p”, and
individuals, who prefer x; to x; at p, prefer x; to xi to x; at p”.

And suppose that individuals, who prefer x; to x; at p, prefer x; to xx to x; at another profile p*, and
individuals, who prefer x; to x; at p, prefer x; to x; and prefer x to x; at p* (their preferences about x;
and x; are not specified).

By transitivity, Pareto principle and IIA the society prefers x; to x; to x at p”. Again by transitivity,
Pareto principle and IIA (about x; and xi) the society prefers x; to xx to x; at p*. Then, ITA implies that
the society prefers x; to x; so long as individuals, who prefer x; to x; at p, prefer x; to x; at an arbitrary

profile p’. O

Next we show the following lemma which will be used below.

Lemma 4.2 Suppose that a binary social choice rule satisfies transitivity, Pareto principle, I1A, and has no
dictator. If the preference of one individual (denoted by i) is v(;,—1)141, and the preferences of all other

individuals are vy, then the most preferred alternative for the society is x;.

Proof. Note that v(,—1)14; represents a preference (2134 ---m), and vy represents a preference (123 - - - m).

By Pareto principle the society prefers x; and x, to all other alternatives. It may prefer x; to x,, or x,
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to x;&3. But we can show that if the society prefers x; to xp, individual i is the dictator. Assume that the
society prefers x, to xy to all other alternatives. By the weak monotonicity the society prefers x, to x; so
long as individual i prefers x, to x;. Then, we say that individual i is decisive for x, against x;. Let x;

and xi (xx # x;) be alternatives other than x; and x,, and consider the following profile.

1. Individual i prefers xj to x» to x to x;.

2. Other individuals prefer x; to x; to xi to x».

By the weak monotonicity (or ITA) the society should prefer x5 to x;. And by Pareto principle the society
should prefer x; to x;, and prefer xi to x,. Then, transitivity implies that the society prefers xi to x;. The
weak monotonicity implies that the society prefers xi to x; so long as individual i prefers x; to x;, and
individual 7 is decisive for x; against x;. Note that x; and xj are arbitrary. Next consider the following

profile.

1. Individual i prefers x; to xi to x;.

2. Other individuals prefer x; to x to xg.

By the weak monotonicity (or IIA) the society should prefer xi to x;. And by Pareto principle the society
should prefer x to xi. Then, transitivity implies that the society prefers x» to x;. The weak monotonicity
implies that the society prefers x, to x; so long as individual i prefers x; to x;, and individual i is decisive

for x, against x;. Consider the following profile.

1. Individual i prefers xj to x; to x,.

2. Other individuals prefer x; to x; to xi.

By the weak monotonicity (or IIA) the society should prefer xx to x;. And by Pareto principle the society
should prefer x; to x,. Then, transitivity implies that the society prefers xx to x». The weak monotonicity
implies that the society prefers xx to x, so long as individual i prefers x; to x,, and individual i is decisive
for xx against x,. By similar procedures we can show that individual i is decisive for x; against x;, and is

decisive for x; against x;. Finally consider the following profile.

1. Individual i prefers x; to x to x5.

2. Other individuals prefer x, to x; to xi.

By the weak monotonicity (or ITA) the society should prefer x; to x,. And by Pareto principle the society
should prefer x; to xg. Then, transitivity implies that the society prefers x; to x,. The weak monotonicity
implies that the society prefers x; to x; so long as individual i prefers x; to x,, and individual i is decisive
for x; against x,. Therefore, individual i is the dictator, and we must assume that the society prefers x;
to all other alternatives when the preference of individual i is v(;,—1)14+1 and the preferences of individuals

other than i are v;. O

In both AR and LP cases, by Pareto principle we obtain the correspondences from the vertices of S} to
the vertices of S! by f o A as follows.

V1 ~ Uo(m—1)! — W2, Va(m—1)14+1 ~ V3(m—1)! —> W3, V3m—-1)1+1 ~ V4(m—1)! —> W1

*3 From Lemma 1 of [Baryshnikov] (1993) we know that if individual preferences are strict orders, then the social
preference is also a strict order under transitivity, Pareto principle and ITA.
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All other vertices correspond to w,. Sets of 1-dimensional simplices included in S! which are 1-

dimensional cycles are only the following z and its counterpart —z.

zZ=<UV1,02 >4+ <UVU,03 >+ 4 < Upi—1, Uy >+ < Up1, U1 >
Since S does not have a 2-dimensional simplex, z is a representative element of homology classes of S}.
z is transferred by (f o A)4 to the following z’.

=< wy, w3 >+ <ws,w >+ < wp,wy >

This is a cycle of S!. Therefore, we have

(f oA #0 43)
Now we show the following lemma.

Lemma 4.3 1. If a binary social choice rule satisfies acyclicity, Pareto principle and the minimal lib-

eralism described in Assumption 1, then we obtain

(foii)x =0 foralli (4.4)
2. If a binary social choice rule satisfies transitivity, Pareto principle and ITA, then we obtain (4.4).

Proof. 1. First we show (f oi;)« = 0 for individual A and B. Consider the case of individual B. From
Assumption 1 and Pareto principle, the correspondences from the preference of individual B to the
social preference when the preference of every other individual (including individual A) is fixed at

v are obtained as follows.

V1 ~ V(m—-1)! — W2, VYm—-1)!4+1 ~ Um! —> W1 OF W3

In this case x3 can not be the most preferred alternative for the society.
Sets of 1-dimensional simplices included in S} for individual B (denoted by Sll;) which are

1-dimensional cycles are only the following z and its counterpart —z.

Z=<V1,02 >+ <V2,03 >+ + < Upl—1,Um > + < Upt, V1 >

Since S} does not have a 2-dimensional simplex, z is a representative element of homology classes

of Sllg. z is transferred by (f o ig)«, which is (f o ;) for individual B, to the following z’ in S!.

Z =<wy,wi >4+ <w,wp>=0,0rz =< wy, wy >=0

This is not a cycle. Therefore, we get (f o ig)s = 0. Similarly we can show (f 0i4), = &9,

Next we show (f oi;)« = 0 for any individual (denoted by i) other than A and B. From Assump-
tion 1 and Pareto principle, the correspondences from the preference of individual i to the social
preference when the preference of every other individual (including individual A and B) is fixed at

v are obtained as follows.
V1 ~ Ut —> W2

Because x3 and x4 can not be the most preferred alternative for the society. Then, we obtain (f o
i;)« = 0 for all i other than A and B.

*6 (f oig)«is (f oij)« for individual A. In this case x4 can not be the most preferred alternative for the society.
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2. By Pareto principle when the preference of every individual other than i is fixed at vy, the corre-
spondences from the preference of individual i to the social preference from vy to v(,—1y are as

follows.
U1 ~ Vm-1)! —> W2

From Lemma H.2]the correspondence from v(,—1)1+1 to the social preference is as follow.

Vm—1)14+1 —> W2

Consider another profile at which the preference of individual i changes to (234 ---ml1). By Pareto
principle and the weak monotonicity (about x; and x;) the society prefers x; to all other alterna-
tives. Further the weak monotonicity implies that the society prefers x; to all other alternatives so
long as the most preferred alternative for all individuals other than i is x; regardless of the prefer-

ence of individual i. Thus, we obtain the following correspondences.

Vim—1)142 ~ Um! —> W2
Sets of 1-dimensional simplices included in S} which are 1-dimensional cycles are only the following
z and its counterpart —z.

Z=<V1,02 >+ < V2,03 >+ -+ < Uplo1,Un! >+ < Upt, V1 >

Since Sl.1 does not have a 2-dimensional simplex, z is a representative element of homology classes

of S}. z is transferred by (f o i;)« to the following z’.

=< wy,wp >=0

Therefore, we have (f oi;), = 0 foralli.
O

The conclusion of this lemma contradicts (@.2)) and (@.3)) for both LP and AR. Therefore, we have shown

the following theorem.

Theorem 4.1 1. There exists no binary social choice rule which satisfies acyclicity, Pareto principle and
the minimal liberalism.
2. There exists no binary social choice rule which satisfies transitivity, Pareto principle and I11A, and

has no dictator.

We call the property expressed in (@.4) the non-surjectivity of individual inclusion mappings. Then, the

above two theorems are special cases of the following theorem.

Theorem 4.2 There exists no binary social choice rule which satisfies Pareto principle and the non-

surjectivity of individual inclusion mappings.

From (4.3) Pareto principle implies the surjectivity of the diagonal mapping, (f o A). # 0, for binary

social choice rules. Thus, this theorem is rewritten as follows.

There exists no binary social choice rule which satisfies the surjectivity of the diagonal mapping and

the non-surjectivity of individual inclusion mappings.
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4.4 Concluding Remarks

We have shown the topological equivalence of the Arrow impossibility theorem that there exists no
binary social choice rule which satisfies transitivity, Pareto principle, independence of irrelevant alterna-
tives, and has no dictator, and Amartya Sen’s liberal paradox that there exists no binary social choice rule
which satisfies acyclicity, Pareto principle and the minimal liberalism. And we have also shown that these
two theorems are special cases of the theorem that there exists no binary social choice rule which satisfies
Pareto principle and the non-surjectivity of individual inclusion mappings.

In Baryshnikov| (1997) he said, “the similarities between the two theories, the classical and topological
ones, are somewhat more extended than one would expect. The details seem to fit too well to represent just
an analogy. I would conjecture that the homological way of proving results in both theories is a ‘true’ one
because of its uniformity and thus can lead to much deeper understanding of the structure of social choice.
To understand this structure better we need a much more evolved collection of examples of unifying these

two theories and I hope this can and will be done.” This chapter is an attempt to provide such an example.
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Chapter 5

A topological approach to Wilson’s
iImpossibility theorem

We will present a topological approach to Wilson’s impossibility theorem (Wilson!(1972)) that there
exists no non-null binary social choice rule which satisfies transitivity, independence of irrelevant
alternatives, non-imposition and has no dictator nor inverse dictator. Our research is in line with
the studies of topological approaches to discrete social choice problems initiated by |Baryshnikov
(1993). This chapter extends the result about the Arrow impossibility theorem shown in [Tanaka
(2006D) to Wilson’s theoremEll

5.1 Introduction

Topological approaches to social choice problems have been initiated by|Chichilnisky| (1980). Her main
result is an impossibility theorem that there exists no continuous social choice rule which satisfies unanim-
ity and anonymity. This approach has been further developed by |Chichilnisky| (1979)), (1982), [Koshevoy
(1997), Lauwers|(2004)), [Weinberger| (2004) and so on. On the other hand, Baryshnikov|(1993) and (1997)
have presented a topological approach to the Arrow impossibility theorem (Arrow| (1963)) in a discrete
framework of social choicdZ. In this chapter we will present a topological approach to Wilson’s impossi-
bility theorem (Wilsonl (1972)) that there exists no non-null binary social choice rule which satisfies tran-
sitivity, independence of irrelevant alternatives, non-imposition and has no dictator nor inverse dictator
under the assumption of the free triple property. Our main tool is a homomorphism of homology groups
of simplicial complexes induced by simplicial mappings®3. This chapter extends the result about the Arrow
impossibility theorem shown in[Tanakal (2006b) to Wilson’s theorem. For other researches of topological
approaches to social choice problems, seeTanakal (2006a)), Tanakal (2006¢) and [Tanakal (2006d).

In the next section we summarize our model and preliminary results about the homology groups of
simplicial complexes which represent individual and social preferences according to [Tanakal (2006b). In

Section 5.3 we will prove the main results.

*I This chapter is based on my paper of the same title published in Journal of Mathematical Economics, Vol. 43,
No. 2, pp. 184-191, 2007, Elsevier.

*2 About surveys and basic results of topological social choice theories, see[Mehtal (1997) and [Lauwers| (2000).

*3 About homology groups we referred toTamural (I970) and [Komiya] (2001).
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5.2 The model and simplicial complexes

There are n(> 3) alternatives and k(> 2) individuals. n and k are finite positive integers. Denote
individual i’s preference by p;. A profile of individual preferences is denoted by p, and the set of profiles
is denoted by Pk The alternatives are represented by x;, i = 1,2,---, n. Individual preferences over the
alternatives are weak orders, that is, individuals strictly prefer one alternative to another, or are indifferent
between them. We consider a binary social choice rule which determines a social preference corresponding
to a profile. Transitive social choice rule is called a social welfare function and is denoted by F(p). We
assume the free triple property, that is, for each combination of three alternatives individual preferences are
not restricted. If the society is indifferent about every pair of two alternatives, the social welfare function
is called null. If a social welfare function is not null, that is, the social preference derived by the social
welfare function is strict about at least one pair of alternatives, then the social welfare function is called
non-null.

Social welfare functions must be non-null, and must satisfy non-imposition and independence of irrel-

evant alternatives as well as transitivity. The meanings of the latter two conditions are as follows.

Non-imposition For every pair of two alternatives x; and x; there exists a profile at which the society
prefers x; to x; or is indifferent between them.

Independence of irrelevant alternatives (IIA) The social preference about any pair of two alternatives x;
and x; is determined by only individual preferences about these alternatives. Individual preferences

about other alternatives do not affect the social preference about x; and x;.

The impossibility theorem by [Wilson| (1972)) states that there exists no non-null binary social choice rule
which satisfies transitivity, IIA, non-imposition and has no dictator nor inverse dictator. A dictator is an
individual whose strict preference always coincides with the social preference, and an inverse dictator is
an individual whose strict preference always coincides with the inverse of the social preference.

Hereafter we will consider a set of alternatives x1, x, and x3. From the set of individual preferences

about x1, x, and x3 we construct a simplicial complex by the following procedures.

1. We denote a preference of an individual such that he prefers x; to x, by (1, 2), a preference such
that he prefers x, to x1 by (2, 1), a preference such that he is indifferent between x; and x, by (1, 2),
and similar for other pairs of alternatives. Define vertices of the simplicial complex corresponding
to (i, j)and (i, j).

2. A line segment between the vertices (i, j) and (k, /) is included in the simplicial complex if and only
if the preference represented by (i, j) and the preference represented by (k,[) satisfy transitivity.
For example, the line segment between (1,2) and (3, 2) is included, but the line segment between
(1,2) and (2, 1) is not included in the simplicial complex.

3. A triangle (circumference plus interior) made by three vertices (i, j), (k,/) and (m, n) is included in
the simplicial complex if and only if the preferences represented by (i, j), (k,/) and (m, n) satisfy
transitivity. For example, a triangle made by (1,2), (2,3) and (1, 3) is included in the simplicial

complex. But a triangle made by (1, 2), (2, 3) and (3, 1) is not included in the simplicial complex.

The simplicial complex constructed by these procedures is denoted by P. About a graphical presentation
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of the simplicial complexes see [Tanakal (2006b).
We have shown the following result in Lemma [5.1] of [Tanakal (2006b).

Lemma 5.1 The 1-dimensional homology group of P is isomorphic to the group of 6 integers, that is,
H, (P) ~ 75.

Also about the simplicial complex, P*, made by the set of profiles of individual preferences, P¥, over

X1, x2 and x3 we have shown the following result in Lemma [5.2] of [Tanakal (2006b).

Lemma 5.2 The 1-dimensional homology group of P¥ is isomorphic to the group of 6k integers, that is,
H,(Pk) = 7%k,

The social preference about x; and x; is (i, j) or (j, i) or (i, j), and it is also represented by P. By the
condition of IIA, individual preferences about alternatives other than x; and x; do not affect the social
preference about them. Thus, the social welfare function F is a function from the vertices of P¥ to the
vertices of P. A set of points in P¥ spans a simplex if and only if individual preferences represented by
these points satisfy transitivity, and then the social preference derived from the profile represented by these
points also satisfies transitivity. Therefore, if a set of points in P¥ spans a simplex, the set of points in P
which represent the social preference corresponding to those points in P¥ also spans a simplex in P, and
hence the social welfare function is a simplicial mapping. It is naturally extended from the vertices of P¥
to all points in P¥. Each point in P¥ is represented as a convex combination of the vertices of P¥. This
function is also denoted by F.

We define an inclusion mapping from P to P¥, A: P — P¥: p — (p, p.---, p), and an inclusion
mapping which is derived by fixing the profile of preferences of individuals other than individual / to p_;,
ii: P — PK: p — (p_;, p). The homomorphisms of 1-dimensional homology groups induced by

these inclusion mappings are

Ay: 20— 7% : h— (W h,-- h), heZ®

i1 28 — Z%% . h — (0,--- ,h,--- ,0) (only the /-th component is &
and others are zero, h € Z°)
From these definitions about A, and i;, we obtain the following relation.
Ax =l1x Fioe + o+ s (5.1)
And the homomorphism of homology groups induced by F is represented as follows.
Fo: 2% —7°: h= (hy,ha--+ . hg) — h, h € Z°
The composite function of #; and the social welfare function F is F oi; : P —> P, and its induced

homomorphism satisfies (F o ij)x = Fx o i;x. The composite function of Aand Fis FoA: P — P,

and its induced homomorphism satisfies (F o A), = Fyx o Ay. From (3.I)) we have
(Fod)s=(Foil)s+ (Foix)x+ -+ (Foig)«
F o i; when the profile of individuals other than individual / is p_; and F o i; when the profile of

individuals other than individual / is p’; are homotopic. Thus, the induced homomorphism (F o i;)« of

F o i; does not depend on the preferences of individuals other than /.
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For a pair of alternatives x; and x;, a profile, at which all individuals prefer x; to x;, is denoted by
(i, j)P); a profile, at which they prefer x ' to x;, is denoted by (i, j ). And a profile, at which the prefer-
ences of all individuals about x; and x; are not specified, is denoted by (i, j)* where s = {+,0, —}* with
s; the sign of individual j. 0 denotes indifference. Similarly a profile, at which all individuals other than [
prefer x; to x;, is denoted by (7, j )(_+); a profile, at which they prefer x; to x;, is denoted by (i, j )(—_1)- And
a profile, at which the preferences of individuals other than / about x; and x; are not specified, is denoted
by (i, 7).

5.3 The main results
First we show the following lemma.

Lemma 5.3 If (F o A),. = 0 the society is indifferent about any pair of alternatives, that is, the social

welfare function is null.

Proof. Consider a set of three alternatives, x1, x, and x3. Assume that when all individuals prefer x; to
X2, the society prefers x; to x; (or prefers x, to xp), that is, assume the following correspondence from

individual preferences to the social preference.

(1,2) — (1,2) [or (2, 1)]

By non-imposition there exists a profile such that we have the following correspondences.

(2,3) — (2,3) or (2,3) [or “(3,2) or (2,3)"]
(1,3)° — (3, 1) or (1,3) [or “(1,3) or (1, 3)”]

Transitivity implies

(1,3)® — (1,3) [or (3,1)], (5.2)
(2,3)) — (3,2) [or (2,3)] (5.3)

Again, by non-imposition there exists a profile such that we have the correspondence.

(1,2)* — (2. 1) or (1,2) [or “(1,2) or (1,2)"]
Then, from transitivity we obtain

(1,3) — (3, 1) [or (1, 3)],
(2,3) — (2,3) [or (3,2)]

From these arguments we find that a cycle of P, z =< (1,2),(2,3) > + < (2,3),(3,1) > — <
(1,2),(3,1) >, corresponds to a cycle z =< (1,2),(2,3) > + < (2,3),(3,1) > — < (1,2),(3,1) >, or
acyclez/ =< (2,1),(3,2) > + < (3,2),(1,3) > — < (2,1),(1,3) > of P for the social preference by
(F o A).. Because both z and z’ are not a boundary cycle, we have (F o A), # 0. This result can be
reached starting from an assumption other than (1,2)*) — (1,2) [or (1,2)™" — (2, 1)], for example,
(2.3) — (2,3) [or (2.3)F — (3,2)].

Therefore, if (F o A)« = 0 we obtain the following correspondences from individual preferences to the

social preference.

(1,2 — (1,2), 2,3)P — (2,3)
— (1.3)

2.3)0 — (2.3). (1.3)H — (1.3 54



5.3 The main results 47

From (3.4) with transitivity we obtain

(1.3)° — (1,3), (2.3 — (2.3). (1.2 — (1.2)

Thus, the society is indifferent about any pair of alternatives among x;, x, and x3.

Interchanging x3 with x4 in the proof of this lemma, we can show that the society is indifferent about
any pair of alternatives among x1, x, and x4. Similarly, the society is indifferent among x5, x, and x4,
and it is indifferent among x5, x¢ and x4. After all the society is indifferent about any pair of alternatives,

that is, the social welfare function is null. O

This lemma implies that if a social welfare function is non-null, we have (F o A), # 0. Further we show

the following lemma.

Lemma 5.4 1. If individual [ is a dictator or an inverse dictator, we have (F o ;) 7# 0.

2. If he is not a dictator nor inverse dictator, we have (F o ;). = 0.

Proof. 1. Consider three alternatives x;, x, and x3. If individual / is a dictator, the correspondences

from his preference to the social preference by F o i; are as follows,
(172)1 — (152)’ (25 l)l — (29 1)5 (273)1 — (27 3)»

(3,2 — (3,2), (1,3); — (1,3), 3,1); — (3,1)

(1,2); and (2, 1); denote the preference of individual / about x; and x,. (2, 3);, (3,2); and so on are
similar. These correspondences imply that a cycle of P, z =< (1,2),(2,3) > + < (2,3),(3,1) >
— < (1,2),(3,1) >, corresponds to the same cycle of P for the social preference by (F o ij)x.
Because z is not a boundary cycle, we have (F o ij)« # 0.

On the other hand, if individual / is an inverse dictator, the correspondences from his preference to

the social preference by F o i; are as follows,
(1,2); — (2,1, 2,1); — (1,2), (2,3); — (3,2)

(3,2 — (2,3), (1,3); — (3,1), (3,1); — (1,3)

These correspondences imply that a cycle of P, z =< (1,2),(2,3) > + < (2,3),(3,1) > — <
(1,2),(3,1) >, corresponds to a cycle z/ =< (2,1),(3,2) > + < (3,2),(1,3) > — < (2,1),(1,3) >
of P for the social preference by (F o ij)., and so we have (F o i), # 0.

2. From the proof of Lemma [3.3]if a social welfare function is non-null, there are the following two
cases.

(a) Case (a): The following four correspondences simultaneously hold.

(1,20 — (1,2), (1,3)P — (1,3)
+) =) (5.5)
2,3)"" —(2,3), (2,3)")— (3,2
(b) Case (b): The following four correspondences simultaneously hold.
(1,20 — 2, 1), (1,3 — (3,1)
+) &) (5.6)
(2,3 — (3.2), (2.3)"7 —(2,3)

We will provide the proof of Case (b). The proof of Case (a) is similar.
Consider three alternatives x;, x, and x3 and a profile p over them such that the preferences of
individuals other than / are represented by (1, 2)(_J;), (2, 3)(_7) and (1, 3)(_7). If individual / is not
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an inverse dictator, there exists a profile at which the social preference about some pair of alterna-
tives does not coincide with the inverse of his strict preference. Assume that when the preference
of individual / is (1, 2), the social preference is (1,2) or (2, 1). Then, we obtain the following corre-

spondence from the profile to the social preference.
(1,2)%; x (1,2); — (1,2) or (1,2)
Then, from (3.6) and transitivity we obtain
2.3)% x (3.2, — (3.2)

and
(1,3)% % 3, 1) — 3. 1)

Further, from (3.6) and transitivity we get the following correspondence.
1.9 x @ 1 — @1

These results imply that at a profile p, where the preferences of individuals other than [ are repre-
sented by (1, 2)(_?), (2, 3)(_J;) and (1, 3)(_+l), the correspondences from the preference of individual /

to the social preference by F o i; are as follows.

(1,2) — (2, 1), 2,11 — (2, D, (2,31 — 3.2),
(3,2); — (3,2), (1,3 — (3,1), 3, 1)) — (3,1)

These correspondences with transitivity and ITA imply that, when individual / is indifferent between

x1 and x3, the society prefers x3 to xp, that is, we obtain the following correspondence.

(1,3) — (3, 1)

This is derived from two correspondences (1,2); —> (2, 1) and (3,2); — (3, 2). Therefore, the
following four sets of correspondences are impossible because the correspondences in each set are
not consistent with the correspondence (1,3); — (3, 1).

(@ (1,2 — (1.2), (2,3); — (2.3)

® (1,2) — (1,2), (2,3); — (2,3)

© (1.2); — (1,2), (2.3); — (2.3)

@ (T2 — (1,2), 2.3 — (2.3)

There are the following five cases, which are consistent with the correspondence (1,3); — (3, 1).
(a) Case (i): (1,2); — (1,2), (2,3); — (3,2)

(b) Case (ii): (1,2); — (2, 1), (2,3); — (2,3)

(c) Case (iii): (1,2); — (2.1), (2.3); — (3.2)

(d) Case (iv): (1,2); — (1,2), (2,3); — (3.2)

(e) Case (v): (1,2); — (2,1), (2,3); — (2.3)

We consider Case (i). The arguments for other cases are similar.

In Case (i) we have (1,2); — (1,2), (2,3); — (3,2). The vertices of P for the social preference

mapped from the preference of individual / by F o i; span the following five simplices.

<(2,1),(3,2) >, <(2,1).3, 1) >, <(3.2),(3.1) >, <(1,2),(3,2) >,
<(1,2),3,1) >
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Then, an element of the 1-dimensional chain group is written as

1 =ar <(2,1),(3,2) > +az < (2,1),(3,1) > +a3 < (3,2),(3,1) >
+as <(1,2),(3,2) > +as < (1,2),(3,1) >, a; € Z

The condition for an element of the 1-dimensional chain group to be a cycle is
dcy =(—a; —az) < (2,1) > +(a; —as +aq) < (3,2) >
+(az +az +as) < (3,1) > +(—ag —as) < (1,2) >=0

From this
—ai1—a,=0,a1—a3+as=0,a,+a3+as=0, —ag—as =0

are derived. Then, we obtain a» = —a1, as = —aa, az = a; + a4. Therefore, an element of the

1-dimensional cycle group, Z1, is written as follows.

z1 =a1 < (2,1),(3,2) > —a; < (2,1),(3,1) > +(a; +a4) < (3,2),(3,1) >
+as < (1,2).(3.2) > —as < (1.2).(3.1) >

On the other hand, the vertices span the following 2-dimensional simplices.

<(2,1),(3,2.3.1) >, <(1,2).(3,2),(3,1) >

Then, an element of the 2-dimensional chain group is written as

2 =b1 <(2,1),3,2).3.1)> +b, < (1,2).(3,2),3.1) >, b; € Z

And an element of the 1-dimensional boundary cycle group, Bj, is written as follows.

dca =b1 < (2,1),(3,2) > —b1 < (2,1),(3,1) > +(b1 + b2) < (3,2),(3,1) >
+br < (1,2),(3,2) > —b» < (1,2). 3, 1) >

Then, we find that B; is isomorphic to Z;, and so the 1-dimensional homology group is trivial, that
is, we have proved (F o i), = 0.
Thus, if there exists no inverse dictator, we have (F o i;), = 0.

O

From these arguments and (F o A), # 0 there exists a dictator or an inverse dictator about x;, x, and
x3. Let individual / be a dictator or an inverse dictator. Interchanging x3 with x4 in the proof of this
lemma, we can show that he is a dictator or an inverse dictator about x1, x, and x4. Similarly, we can
show that he is a dictator or an inverse dictator about x5, x» and x4, he is a dictator or an inverse dictator
about x5, xg and x4. After all he is a dictator or an inverse dictator about all alternatives

From these lemmas we obtain the following theorem.

Theorem 5.1 (Wilson’s impossibility theorem) There exists a dictator or an inverse dictator for a social

welfare function which is non-null, and satisfies IIA and non-imposition.

Proof From Lemma [5.3]if a social welfare function is non-null, we have (F o A), # 0. Therefore, from

Lemma (3.4l there exists a dictator or an inverse dictator. O
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Chapter 6

Equivalence of the HEX game theorem
and the Arrow impossibility theorem

Gale| (1979) has shown that the so called HEX game theorem that any HEX game has one winner
is equivalent to the Brouwer fixed point theorem. In this chapter we will show that under some
assumptions about marking rules of HEX games, the HEX game theorem is equivalent to the Arrow
impossibility theorem of social choice theory that there exists no binary social choice rule which
satisfies transitivity, Pareto principle, independence of irrelevant alternatives and has no dictator.
We assume that individual preferences over alternatives are strong (or linear) orders, that is, the

individuals are not indifferent about any pair of alternativesl.

6.1 Introduction

Galel (1979) has shown that the so called HEX game theorem that any HEX game has one winner is
equivalent to the Brouwer fixed point theorem. In this chapter we will show that under some assumptions
about marking rules of HEX games, the HEX game theorem is equivalent to the Arrow impossibility
theorem of social choice theory (Arrow! (1963)) that there exists no binary social choice rule which satis-
fies transitivity, Pareto principle, independence of irrelevant alternatives and has no dictator. We assume
that individual preferences over alternatives are strong (or linear) orders, that is, the individuals are not
indifferent about any pair of alternatives.

In the next section according to|Galel (1979) we present an outline of the HEX game. In Section 6.3 we
will show that the HEX game theorem implies the Arrow impossibility theorem. And in Section 6.4 we

will show that the Arrow impossibility theorem implies the HEX game theorem.

6.2 The HEX game

According to|Galel (1979) we present an outline of the HEX game. Figure 1 (a) represents a 6 x 6 HEX
board. Generally a HEX game is represented by an n x n HEX board where n is a finite positive integer.
The rules of the game are as follows. Two players (called Mr. W and Mr. B) move alternately, marking

any previously unmarked hexagon or tile with a white (by Mr. W) or a black (by Mr. B) circle respectively.

*I This chapter is based on my paper of the same title published in Applied Mathematics and Computation, Vol.
186, No. 1, pp. 509-515, 2007, Elsevier.
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Figure 1: HEX game

The game has been won by Mr. W (or Mr. B) if he has succeeded in marking a connected set of tiles which
meets the boundary regions W and W’ (or, B and B’). A set S of tiles is connected if any two members of
the set 4 and A’ can be joined by a path P = (h = h',h?,... k™ = I’) where i’ and h’*! are adjacent.
Figure 1 (b) represents a HEX game which has been won by Mr. B.

About the HEX game|Galel (1979) has shown the following theorem.

Theorem 6.1 (The HEX game theorem) If every tile of the HEX board is marked by either a white or a

black circle, then there is a path connecting regions W and W', or a path connecting regions B and B’'.

Actually he has shown the theorem that any hex game can never end in a draw, and there always exists
at least one winner. But, from his intuitive explanation using the following example of river and dam, it is

clear that there exists only one winner of any hex game.

Imagine that B and B’ regions are portions of opposite banks of the river which flow from W
region to W’ region, and that Mr. B is trying to build a dam by putting down stones. He will have
succeeded in damming the river if and only if he has placed his stones in a way which enables him

to walk on them from one bank (B region) to the other (B’ region).

The proof of Theorem|[6.Iland also the above intuitive argument do not depend on the rule “two players

move alternately”. Therefore, this theorem is valid for any marking rule.

Figure 2 (a) is obtained by plotting the center of each hexagon, and connecting these centers by lines.
Rotating this graph 45° in anticlockwise direction, we obtain Figure 2 (b). It is an equivalent representation
of the HEX board depicted in Figure 1 (a). W and W' represent the regions of Mr. W, and B and B’
represent the regions of Mr. B. We call it a square HEX board, and call a game represented by a square
HEX board a square HEX game. In Figure 2 (b) we depict an example of winning marking by Mr. B. It
corresponds to the marking pattern in Figure 1 (b). A set of marked vertices which represents one player’s

victory is called a winning path.
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W/

Figure 2: Square HEX game and winning path

6.3 The HEX game theorem implies the Arrow impossibility theorem

There are m(> 3) alternatives and n(> 2) individuals. m and n are finite positive integers. The set
of individuals is denoted by N. Denote individual i’s preference by p;. A combination of individual
preferences, which is called a profile, is denoted by p(= (p1, p2.--- , Pn)). The set of profiles is denoted by
P, The alternatives are represented by x;, i = 1,2,--- ,m. Individual preferences over the alternatives
are strong (or linear) orders, that is, individuals strictly prefer one alternative to another, and are not
indifferent about any pair of alternatives. We assume the free triple property, that is, for each set of three
alternatives individual preferences are never restricted.

We consider a binary social choice rule which determines a social preference corresponding to each pro-
file. Binary social choice rules must satisfy the conditions of transitivity, Pareto principle and independence
of irrelevant alternatives (114 ). Transitive binary social choice rules are called social welfare functions. The

meanings of these conditions are as follows.

Transitivity If, according to a social welfare function, the society prefers an alternative x; to another
alternative x;, and prefers x; to another alternative xj, then the society must prefer x; to x.

Pareto principle When all individuals prefer x; to x;, the society must prefer x; to x;.

Independence of irrelevant alternatives (IIA) The social preference about every pair of two alternatives
x; and x; is determined by only individual preferences about these alternatives. Individual prefer-

ences about other alternatives do not affect the social preference about x; and x;.

From Lemma 1 of |Baryshnikov| (1993) we know that if individual preferences are strong orders, then
the social preference is also a strong order under the conditions of transitivity, Pareto principle and ITA.

The Arrow impossibility theorem states that there exists no social welfare function which has no dictator,
or in other words there exists a dictator for any social welfare function. A dictator is an individual whose

strict preference always coincides with the social preference.
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According to[Sen| (1979) we define the following terms.

Almost decisiveness If, when all individuals in a group G prefer an alternative x; to another alternative
x;, and the other individuals (individuals in N \ G) prefer x; to x;, the society prefers x; to x;, then
G is almost decisive for x; against x;.

Decisiveness If, when all individuals in a group G prefer an alternative x; to another alternative x;, the
society prefers x; to x; regardless of the preferences of the other individuals, then G is decisive for

X; against x;.

G may consists of one individual. By Pareto principle N is almost decisive and decisive about every pair
of alternatives. If for a social welfare function an individual is decisive about every pair of alternatives,
then he is the dictator of the social welfare function.

Sen| (1979) and [Suzumural (2000) have shown the following result.

Lemma 6.1 (Lemma 3*a in/Sen|(1979) and Dictator Lemma in/Suzumural(2000)) If one individual is almost

decisive for one alternative against another alternative, then he is the dictator of the social welfare function.

This lemma holds under the conditions of transitivity, Pareto principle and IIA. The conclusion of this
lemma is also valid in the case where not an individual but a group of individuals is almost decisive for

one alternative against another alternative. Thus, the following lemma is derived.

Lemma 6.2 If a group of individuals G is almost decisive for one alternative against another alternative,

then this group is decisive about every pair of alternatives.

Now we confine us to a subset of profiles P such that all individuals prefer three alternatives xq, x;
and xj to all other alternatives. Pareto principle implies that at all such profiles the society also prefers x1,
x5 and x3 to all other alternatives. We denote individual preferences about x;, x, and x3 in this subset of

profiles as follows.

pl = (123), p? = (132), p? = (312), p* = (321), p°> = (231), p® = (213)

p' = (123) represents all preferences such that an individual prefers x; to x, to x3 to all other alternatives,
and so on. Although we confine our arguments to such a subset of profiles, Lemma [6.]] with ITA ensures
that an individual who is almost decisive about a pair of alternatives for this subset of profiles is the dictator
for all profiles.

From Lemma [6.2]for the profiles in P” we obtain the following result.

Lemma 6.3 If two groups G and G’, which are not disjoint, are almost decisive about a pair of alternatives,

then their intersection G N G’ is decisive about every pair of alternatives.

Proof. By Lemmal6.2]G and G’ are decisive about every pair of alternatives. For three alternatives x1, x»

and x3 we consider the following profile in P".

1. Individuals in G \ (G N G’) prefer x5 to x; to x5.
2. Individuals in G’ \ (G N G') prefer x5 to x3 to x;.
3. Individuals in G N G’ prefer x; to x, to x3.

4. Individuals in N \ (G U G’) prefer x5 to x5 to xj.



54 Chapter 6 HEX game theorem and the Arrow impossibility theorem

k/
1 3
6 P Pr DPr DPp DPr D 5
P %,
p5_k pik
p4_k pik
—k 5 5 —k'
P YL
pQ_k p2_k
pl_k pl_k
1 2 3 4 5
P, DPr Pr DPr P pg
k

Figure 3: HEX game representing profiles

By the decisiveness of G and G’ and transitivity the society must prefer x; to x, to x3. Since only individ-
uals in G N G’ prefer x; to x3 and all other individuals prefer x5 to x;, G N G’ is almost decisive for x;

against x3 under ITA. From Lemma[6.2]it is decisive about every pair of alternatives. O

Further we confine us to a subset of 2" such that all but one individual have the same preferences,
and consider a HEX game between one individual (denoted by individual k) and the set of individuals
other than k. Representative profiles are denoted by (pf(, pfk), i=1,...,6, j =1,...,6, where p}; is
individual ks preference and p’ « denotes the common preference of the individuals other than k. We
relate these profiles to the vertices of a 6 x 6 square HEX board as depicted in Figure 3. There are 36
vertices in this HEX board. It represents a square HEX game. k and k' represent individual k’s regions,

and —k and —k’ represent the regions of the set of individuals other than k.

We consider the following marking and winning rules of the square HEX game.

1. Ata profile represented by a vertex of a square HEX board, if the society’s most preferred alternative
is the same as that of individual k and different from that of the individuals other than k, then this
vertex is marked by a white circle; conversely if the society’s most preferred alternative is the same
as that of the individuals other then k and different from that of individual &, then this vertex is
marked by a black circle.

Hereafter we abbreviate the most preferred alternative by MPA.

2. At a profile, if the society’s MPA is different from any of those of individual £ and the individuals
other than k, or the MPAs of all individuals are the same, then the vertex which corresponds to this
profile is randomly marked by a white or a black circle.

3. The game has been won by individual £ (or the set of individuals other than k) if he has (or they
have) succeeded in marking a connected set of vertices which meets the boundary regions k and k’
(or —k and —k’).
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Figure 4: Winning path of a square HEX game

A square HEX game is equivalent to the original HEX game. Therefore, there exists one winner for any

marking rule. Now we show the following result.
Theorem 6.2 The HEX game theorem implies the existence of a dictator for any social welfare function.
Proof. Since diagonal vertices are not connected, the diagonal path

(P P2 (PR P2) - (PR PoR))

can not be a winning path. Consider a profile ( p,i, pfk) = ((123), (213)). By Pareto principle x3 is not
the society’s MPA. Suppose that at this profile the society’s MPA is x, which is the MPA of the individuals
other than k. Then, by Pareto principle and IIA the society’s MPA at the following profiles is x;.

(Pi-P2). (PR PSR)

The fact that the society’s MPA at a profile (p7, p®,) is x2, with Pareto principle and IIA, implies that the
society’s MPA at the following profiles is x5.

(Pe- P20 (PR P22). (PR P%)

Similarly consider a profile ( pi, pzk) = ((312), (132)). By Pareto principle x; is not the society’s MPA.
Suppose that at this profile the society’s MPA is x; which is the MPA of the individuals other than k.
Then, by Pareto principle and ITA the society’s MPA at the following profiles is x.

(P2. X0, (i P20)

The fact that the society’s MPA at a profile ( p,‘i, p? &) 18 x1, with Pareto principle and IIA, implies that the
society’s MPA at the following profiles is x;.

(3. PLo). (08, pLy), (P2, P20
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Similarly consider a profile (p3. p*,) = ((231), (321)). By Pareto principle x; is not the society’s MPA.
Suppose that at this profile the society’s MPA is x5 which is the MPA of the individuals other than k.
Then, by Pareto principle and IIA the society’s MPA at the following profiles is x3.

The fact that the society’s MPA at a profile ( pg, p* ) 18 x3, with Pareto principle and IIA, implies that the
society’s MPA at the following profiles is x3.

(Pe- P20)- (P P20)- (PR P20)

The vertices which correspond to all of these profiles are marked by black circles. Then, when all other
vertices are marked by white circles, we obtain a marking pattern of a square HEX board as depicted in
Figure 4. The set of individuals other than & is the winner of this HEX game. Therefore, for individual
k to be the winner of a square HEX game, the society’s MPA must coincide with that of individual k at
least at one of three profiles (p;. p®,), (p3. p2;) and (py, p*,). It means that individual k£ must be almost
decisive about at least one pair of alternatives, and then by Lemma[6. Tl he is the dictator.

Ifforallk, (k =1,2,---,n),individual k is not the winner of any square HEX game between individual
k and the set of individuals other than k, then each set of individuals excluding one individual is the winner
of each square HEX game. By Lemmal6.3levery nonempty intersection of the sets of individuals excluding
one individual is decisive. Then, the intersection of N \ {1}, N \ {2}, ---, N \ {n — 1} is decisive. But
(N\N{HNNN{2Y) N---(N\{n —1}) = {n}. Thus, individual n is the dictator. Therefore, the HEX

game theorem implies the existence of a dictator for any social welfare function. O

By this theorem the HEX game theorem implies the Arrow impossibility theorem.

6.4 The Arrow impossibility theorem implies the HEX game theorem

Next we will show that the Arrow impossibility theorem implies the HEX game theorem under an in-
terpretation of dictator. Similarly to the previous section, we confine us to a subset of profiles such that
all individuals prefer three alternatives x, x, and x3 to all other alternatives, and the preferences of in-
dividuals other than one individual (denoted by k) are the same. And we consider a square HEX game
between individual k and the set of individuals other than k. The dictator of a social welfare function is
interpreted as an individual who can determine the MPA of the society when his MPA and that of the
other individuals are different, and in a HEX game he can mark tiles with his color in such cases. We
denote a vertex of a square HEX board which corresponds to a profile ( p;'c, pf ) simply by ( p;'c, pi )

First, consider the case where individual k is the dictator of a social welfare function. Then, the following

vertices are marked by white circles.
Pk P20 (P P20y (0 P20 (s p20)s (7 P21 (D7 P20)s (PR P24 (D7 PS)
(P PR (i P20 (PR P20 (PR PE0). (i PLi)- (P P20 (PR P21 (PR Py
(P2 PLi) (P2 P20 (PR P2)- (PR p2)s (PR pLo)s (PR P20 (PR P20 (PR PEp)

We obtain Figure 5. Unmarked vertices, where the MPAs of all individuals are the same, should be ran-

domly marked. Clearly individual k is the winner of this HEX game.
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Figure 5: HEX game won by individual k

Next, consider the case where the dictator of a social welfare function is included in the set of individuals
other than k. Then, all of the above vertices are marked by black circles, and the set of individuals other
than k is the winner of the HEX game.

Therefore, the existence of a dictator for a social welfare function implies the existence of a winner for

a HEX game, and we obtain

Theorem 6.3 The Arrow impossibility theorem and the HEX game theorem are equivalent.

6.5 Concluding Remarks

We have considered the relationship between the HEX game theorem and the Arrow impossibility the-
orem, and have shown their equivalence. In this chapter we have assumed that individual preferences over
alternatives are strong (or linear) orders. We are now proceeding research on extension of the result of
this chapter to the case where individual preferences over alternatives are weak orders, that is, they may

be indifferent about any pair of two alternatives (See Chapter 8).
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Chapter 7

On the equivalence of the HEX game
theorem and the Duggan-Schwartz
theorem for strategy-proof social choice
correspondences

Galel (1979) has shown that the so called HEX game theorem that any HEX game has one winner
is equivalent to the Brouwer fixed point theorem. In this chapter we will show that under some
assumptions about marking rules of HEX games, the HEX game theorem for a 6 x 6 HEX game
is equivalent to the Duggan-Schwartz theorem for strategy-proof social choice correspondences
(Duggan and Schwartz/(2000)) that there exists no social choice correspondence which satisfies the

conditions of strategy-proofness, non-imposition, residual resoluteness, and has no dictator]]

7.1 Introduction

Galel (1979) has shown that the so called HEX game theorem that any HEX game has one win-
ner is equivalent to the Brouwer fixed point theorem. In this chapter we will show that under some
assumptions about marking rules of HEX games, the HEX game theorem for a 6 x 6 HEX game is
equivalent to the Duggan-Schwartz theorem for strategy-proof social choice correspondences (Duggan
and Schwartz (2000)) that there exists no social choice correspondence which satisfies the conditions of
strategy-proofness, non-imposition, residual resoluteness, and has no dictator®2.

In the next section according to|Galel (1979) we present an outline of the HEX game. In Section 7.3 we
will show that the HEX game theorem implies the Duggan-Schwartz theorem. And in Section 7.4 we will

show that the Duggan-Schwartz theorem implies the HEX game theorem.
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Figure 1: HEX game

72 The HEX game

According to|Galel (1979) we present an outline of the HEX game. Figure 1 (a) represents a 6 x 6 HEX
board®3. Generally a HEX game is represented by an n x n HEX board where n is a finite positive integer.
The rules of the game are as follows. Two players (called Mr. W and Mr. B) move alternately, marking
any previously unmarked hexagon or tile with a white (by Mr. W) or a black (by Mr. B) circle respectively.
The game has been won by Mr. W (or Mr. B) if he has succeeded in marking a connected set of tiles which
meets the boundary regions W and W’ (or, B and B’). A set S of tiles is connected if any two members of
the set 4 and &’ can be joined by a path P = (h = h',h?,... k™ = I’) where i’ and h'*! are adjacent.
Figure 1 (b) represents a HEX game which has been won by Mr. B.

About the HEX game|Galel (1979) has shown the following theorem.

Theorem 7.1 (The HEX game theorem) If every tile of the HEX board is marked by either a white or a

black circle, then there is a path connecting regions W and W', or a path connecting regions B and B’'.

Actually he has shown the theorem that any hex game can never end in a draw, and there always exists
at least one winner. But, from his intuitive explanation using the following example of river and dam, it is

clear that there exists only one winner in any hex game.

Imagine that B and B’ regions are portions of opposite banks of the river which flow from W
region to W’ region, and that Mr. B is trying to build a dam by putting down stones. He will have

succeeded in damming the river if and only if he has placed his stones in a way which enables him

*I This chapter is based on my paper of the same title published in Applied Mathematics and Computation, Vol.
188, No. 1, pp. 303-313, 2007, Elsevier.

*2 In another paper, [Tanakal (2007a)), we have shown the equivalence of the HEX game theorem and the Arrow
impossibility theorem. This chapter will apply this idea to the problem of the existence of a dictator for strategy-
proof social choice correspondences.

*3 About the HEX game see also[Binmore! (I991).
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Figure 2: Square HEX game and winning path

to walk on them from one bank (B region) to the other (B’ region).

The proof of Theorem[Z.T]and also the above intuitive argument do not depend on the rule “two players

move alternately”. Therefore, this theorem is valid for any marking rule.

Figure 2 (a) is obtained by plotting the center of each hexagon, and connecting these centers by lines.
Rotating this graph 45° in anticlockwise direction, we obtain Figure 2 (b). It is an equivalent representation
of the HEX board depicted in Figure 1 (a). W and W' represent the regions of Mr. W, and B and B’
represent the regions of Mr. B. We call it a square HEX board, and call a game represented by a square
HEX board a square HEX game. In Figure 2 (b) we depict an example of winning marking by Mr. B. It
corresponds to the marking pattern in Figure 1 (b). A set of marked vertices which represents one player’s

victory is called a winning path.

7.3 The HEX game theorem implies the Duggan-Schwartz theorem

There are m(> 3) alternatives and n(> 2) individuals. m and n are finite positive integers. The set of
individuals is denoted by N, the set of alternatives is denoted by A, and the set of all subsets of 4 is denoted
by A. Denote individual i’s preference by P;. A combination of individual preferences, which is called
a profile, is denoted by p(= (Py, Pa,--- , Py)), and the set of profiles is denoted by P”. The alternatives
are represented by x, y, z and so on. Individual preferences over the alternatives are strong (or linear)
orders, that is, individuals strictly prefer one alternative to another, and are not indifferent about any pair
of alternatives.

We consider a social choice correspondence which chooses one or more alternatives corresponding to
each profile of revealed preferences of the individuals. It is a mapping of P” into A. Given profiles p, p’, p”

. we denote by C(p), C(p’), C(p”) ... the set of alternatives chosen by a social choice correspondence
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at each profile. We call C(p) the social choice set at p, C(p’) the social choice set at p’, and so on. C(p)
for any p is not empty.
We assume the conditions of non-imposition (or citizens’ sovereignty) and residual resoluteness. The

means of these conditions are as follows.

Non-imposition For any social choice correspondence and every alternative x there is a profile p at
which x is chosen by a social choice correspondence, that is, x € C(p).

Residual resoluteness Assume that at a profile p all but one (denoted by i) individual have the same
preferences, and they most prefer an alternative x and secondly prefer another alternative y. And
assume that individual i has the same preference as those of other individuals, or only x and y are
interchanged in his preference. Then, C(p) is a singleton (the social choice correspondence chooses

only one alternative).

As demonstrated by Duggan and Schwartz (2000) residual resoluteness is an appropriate condition if the
number of individuals is not so small.

Next we consider strategy-proofness according to the definition by Duggan and Schwartz (2000). We
assume that each individual (represented by i) has a von Neumann-Morgenstern utility function u;. If
u; (x) > u;(y) when individual i prefers x to y for arbitrary pair of alternatives (x, y), the preference of
individual i is represented by u;.

Let p and p’ be two profiles between which only the preference of individual i differs. C(p) and C(p’)
are the social choice sets at p and p’. Assume that individual i assigns probabilities p(x) and p'(x) to
an alternative x included in C(p) and C(p’), and so on. u(x) is individual i’s subjective probability of
alternative x when C(p) is the social choice set, and p/(x) has similar meaning. Then, his expected utilities

at p and p’ evaluated by his utility function at p are

Ei(p)= ) pxui(x) (where Y pu(x) =1)

xeC(p) xeC(p)

and

Ei(p)= ) W@ui(x) (where Y u'(x)=1)

xeC(p’) xeC(p")

If for all assignments of probabilities to alternatives we have
Ei(p") > Ei(p), (7.1)

then individual i has an incentive to report his preference P/ when his true preference is P;, and the social
choice correspondence is manipulable by him at p. Conversely, if for some assignment of probabilities we
have E;(p) = E;(p’), then the social choice correspondence is not manipulable.

Now we can show the following lemma.

Lemma 7.1 Let p and p’ be two profiles of individual preferences between which only the preference of one
individual (denoted by i) differs. If and only if for some x € C(p’) and all y € C(p), or for some y € C(p)
and all x € C(p’) individual i prefers x to y at p, the social choice correspondence is manipulable by him

at p.

Proof. First consider the case where for some x € C(p’) and all y € C(p) individual i prefers x to y at p.
Let ¢ > 0 be the probability of x assigned by him at p’, w be his top-ranked (most preferred) alternative



62 Chapter 7 HEX game theorem and the Duggan-Schwartz theorem

in C(p), v be his bottom-ranked (least preferred) alternative in C(p’) evaluated by his utility function at

p, u;. Then, we obtain
Ei(p') Z eui(x) + (1 — &)u; (v)

and
Ei(p) = ui(w)

Since u; (x) > u; (w) and u; (x) = u; (v), given £ we can determine the value of u; (x) so that E; (p’) > E;(p)
holds.

Next consider the case where for some y € C(p) and all x € C(p’) individual i prefers x to y at p. Let
& > 0 be the probability of y assigned by him at p, w be his bottom-ranked (least preferred) alternative in
C(p"), and v be his top-ranked (most preferred) alternative in C(p) evaluated by his utility function at p,

u;. Then we obtain
Ei(p') Z ui(w)

and
Ei(p) =eui(y) + (1 —e)u;(v)

Sinceu; (y) < u;(w)and u; (y) < u;(v), given ¢ we can determine the value of u; (y) so that E; (p’) > E;(p)
holds.

Finally, assume that there exists no x € C(p’) such that individual i prefers x to y for all y € C(p),
and no y € C(p) such that he prefers x to y for all x € C(p’) at p. Let x be his top-ranked alternative
in C(p’) and y be his bottom-ranked alternative in C(p) evaluated by his utility function at p, u;. Then,
there exists at least one w € C(p) such that individual i prefers w to x and at least one z € C(p’) such that
individual i prefers y to z at p. Let ¢’ and ¢ be, respectively, the probability of z at p’ and the probability

of w at p assigned by him. Then, we obtain
Ei(p) = &ui(z) + (1 — &ui(x)

and
Ei(p) = eu;j(w) + (1 —&)u;(y)

Since u; (w) > u;(x) and u; (y) > u;(z), if we assume ¢ = 1 — &', we obtain E;(p) > E;(p’), and (ZI)
does not hold. O

Taylor|(2002) and|Taylor|(2005) defined that a social choice correspondence is manipulated by an optimist
in the case where for some x € C(p’) and all y € C(p) individual i prefers x to y at p, and defined that it
is manipulated by an pessimist in the case where for some y € C(p) and all x € C(p’) individual i prefers
x to y at p.

Strategy-proofness is defined as follows:

Strategy-proofness If a social choice correspondence is not manipulable for any individual at any
profile, it is strategy-proof.

Further we define some terminologies as follows.

Monotonicity Let C(p) be the social choice set at some profile p, y be an alternative outside of C(p),
and assume the following individual preferences at p.

1. Individualsin a group S (S € N) prefer x to y for some x € C(p).
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2. Others (group S’ = N — §) prefer y to x for all x € C(p).

Consider another profile p’ € P" such that individuals in S are partitioned into the following /

sub-groups™a.

1. S;: For some set of alternatives X; which includes C(p) and does not include y (C(p) C X;
and y ¢ X;), individuals in Sy prefer x’ to z for all x’ € X; and all z ¢ X; at p'.

2. 8,: For some set of alternatives X, which includes X; and does not include y (X; C X, and

y ¢ X»,), individuals in S, prefer x’ to z for all x’ € X, and all z ¢ X, at p'.

4. S;_1: For some set of alternatives X;_; which includes X;_, and does not include y (X;_» C
X;_1and y ¢ X;_1), individuals in S;_ prefer x’ to z forall x’ € X;_; and all z ¢ X;_; at p’,
5. S;: Their preferences do not change.
The preferences of individuals in S” at p’ are not specified. Then, the social choice correspondence
does not choose y at p’ (y ¢ C(p")).
Semi-decisive A group of individuals S is semi-decisive for x against y if when for some set of alterna-
tives X such that x € X and y ¢ X individuals in S prefer x’ toz forallx’ € X and allz ¢ X, a
social choice correspondence does not choose y regardless of the preferences of other individuals.

Semi-decisive set If S is semi-decisive about all pairs of alternatives, it is called a semi-decisive set.

S in the definition of semi-decisive set may consists of one individual. If, for a social choice correspon-
dence, a set of one individual is a semi-decisive set, then this individual is a dictator of the social choice
correspondence because any alternative other than his most preferred alternative is never chosen.

Now we show the following result.
Lemma 7.2 If a social choice correspondence is strategy-proof, then it satisfies monotonicity.

In the following proof we use notations in the definition of monotonicity, and we neglect individuals in

S; whose preferences do not change between p and p’.

Proof. Without loss of generality let individuals 1 to m (0 =< m = n) belong to S and individuals m + 1 to
n belong to S’. Consider a profile p” other than p and p’ such that individuals in S prefer x to y to z for
all x € C(p), and individuals in S’ prefer y to x to z for all x € C(p), where z is an arbitrary alternative
other than alternatives in C(p) and y.

Let p! be a profile such that only the preference of individual 1 changes from P; (his preference at
p) to P/ (his preference at p”), and suppose that at p! an alternative other than alternatives in C(p) is
included in the social choice set. Then, he has an incentive to report a false preference P; when his true
preference is P|’ because he prefers alternatives in C(p) to all other alternatives at p!. Therefore, at p!
only alternatives in C(p) are chosen by the social choice correspondence. By the same logic, when the
preferences of individuals 1 to m change from P; to P/, only alternatives in C(p) are chosen. Next, let
p™+1 be a profile such that the preference of individual m + 1, as well as the preferences of the first m

m+1 3 is included in the social choice

individuals, changes from Py to P, ., and suppose that at p
set. Then, individual m + 1 has an incentive to report a false preference P, ; when his true preference
is P41 because at p he prefers y to x for all x € C(p). On the other hand, if an alternative other than

alternatives in C(p) is included in the social choice set at p™T!, he has an incentive to report a false

*4 The number of sub-groups / does not exceed the number of individuals who belong to S.
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preference Pp,+1 when his true preference is P, ; because at p™*1 he prefers x to z for all x € C(p) and
allz ¢ C(p), z # y. By the same logic, when the preferences of all individuals change from P; to P/,
only alternatives in C(p) are chosen by the social choice correspondence.

Now, suppose that from p” to p’ the individual preferences change one by one from P/ to P/. If,
when the preference of the first individual in S; changes, an alternative outside of X; is chosen, he has an
incentive to report a false preference P/” when his true preference is P/ because at p’ he prefers x to z for
all x € X; and all z ¢ X;. Consequently only some alternatives included in X; are chosen. By the same
logic, when the preferences of all individuals in S; change from P/ to P/, only some alternatives in X,
are chosen. Similarly, when the preferences of all individuals in S, (denoted by j) change from Pj” to Pj/ ,
only some alternatives in X, are chosen, ---, when the preferences of all individuals in S;_; (denoted by
k) change from P;’ to P/, only some alternatives in X;_; are chosen. Further, if, when the preference of
the first individual (individual m + 1) in S’ changes, y is included in the social choice set, then he has an
incentive to report a false preference P, , ; when his true preference is P,; , | because at p” he prefers y to
z for all z # y. By the same logic, when the preferences of all individuals change, y is not chosen by the

social choice correspondence. O

The Duggan-Schwartz theorem states that there exists a dictator for any strategy-proof social choice
correspondence which satisfies the conditions of non-imposition and residual resoluteness, or in other
words, there exists no social choice correspondence which satisfies the conditions of strategy-proofness,
non-imposition, residual resoluteness, and has no dictator. A dictator for a social choice correspondence
is an individual such that the social choice correspondence always chooses only his most preferred alter-
native, or in other words the social choice set always includes only his most preferred alternative.

About the concepts of semi-decisiveness and semi-decisive set we will show some results. As preliminary

results we show the following lemmas.

Lemma 7.3 (Unanimity) Suppose that a social choice correspondence satisfies the conditions of strategy-
proofness, non-imposition and residual resoluteness. If at a profile p all individuals most prefer an al-

ternative (denoted by x), then the social choice correspondence chooses only this alternative, that is,
C(p) = {x}.

Proof. Consider a profile p’ at which all individuals have the same preferences and they most prefer x.
By residual resoluteness only one alternative is chosen by the social choice correspondence. By non-
imposition at some profile p” x is chosen (x € C(p”)). If, when the preference of one individual (individual
1) changes from P/’ (his preference at p”) to P; (his preference at p’), x is not chosen by the social choice
correspondence, then individual 1 has an incentive to report a false preference P;” when his true preference
is P| because he most prefers x at p’, and the social choice correspondence is manipulable by individual
1. Thus, x is chosen in this case. By the same logic x is chosen at p’. By residual resoluteness at p’ only x
is chosen (C(p’) = {x}).

Next, if, when the preference of one individual (individual 1) changes from P] to P; (his preference at
p), an alternative other than x is chosen by the social choice correspondence, then he has an incentive to
report a false preference P when his true preference is P; because he most prefers x at p, and the social
choice correspondence is manipulable by individual 1. By the same logic any alternative other than x is

not chosen at p, and we have C(p) = {x}. O
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Lemma 7.4 Suppose that a social choice correspondence satisfies the conditions of strategy-proofness,

non-imposition and residual resoluteness.

1. Let partition the individuals into the following two groups, and for alternatives x, y and w we
assume the following profile p:
(a) individuals in a group S: xP; yP;wP;z
(b) others: yP;wP;xP;z
where z denotes an arbitrary alternative other than x, y and w. Then, the social choice correspon-
dence does not choose any alternative other than x and y.

2. Similarly, let partition the individuals into the following two groups, and for alternatives x, y and
w we assume the following profile p:
(a) individualsin S: wP;xP; yP;z
(b) others (N/S): yP;wP;xP;z
where z denotes an arbitrary alternative other than x, y and w. Then, the social choice correspon-

dence does not choose any alternative other than y and w.

Proof. 1. By Lemma there is a profile p’ at which C(p’) = {y}. Suppose that, starting from
individuals outside of S, their preferences change from P/ to P; (from profile p’ to p) one by one.
Even when the preferences of individuals outside of S change, only y is chosen because they most
prefer y at p. On the other hand, when the preferences of individuals in S change, any alternative

other than x and y is not chosen because they most prefer x and secondly prefer y at p.
2. Permuting w, x and y and interchanging S and N/S, the proof of this case is the same as the proof

of Case 1.

O

Next we show

Lemma 7.5 Suppose that a social choice correspondence satisfies the conditions of strategy-proofness,
non-imposition and residual resoluteness. If a group S is semi-decisive about one pair of alternatives,

then it is a semi-decisive set.
Proof. Assume that S is semi-decisive for x against y. Let w be an alternative other than x and y.

1. Consider the following profile p.
(a) Individuals in S prefer x to y to w to z.
(b) Other individuals prefer y to w to x to z.
z denotes an arbitrary alternative other than x, y and w. Since S is semi-decisive for x against y
we have y ¢ C(p). From Lemma[Z.4we have w ¢ C(p) and z ¢ C(p), and so we have C(p) = {x}.
Individuals in S prefer x to w, but all other individuals prefer w to x. Therefore, by monotonicity
S is semi-decisive for x against w.

2. Next consider the following profile p’.
(a) Individuals in S prefer w to x to y to z.
(b) Other individuals prefer y to w to x to z.
z denotes an arbitrary alternative other than x, y and w. Since S is semi-decisive for x against y

we have y ¢ C(p). From Lemmal[Z.4we have x ¢ C(p) and z ¢ C(p), and so we have C(p) = {w}.
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Individuals in S prefer w to y, but all other individuals prefer y to w. Therefore, by monotonicity

S is semi-decisive for w against y.

Applying this logic repeatedly we can show that S is a semi-decisive set. O

The implications of this lemma are similar to those of Lemma 3*a in[Senl (1979) and Dictator Lemma
in[Suzumural (2000) for binary social choice rules. If a set of one individual is semi-decisive about one pair
of alternatives, he is a dictator.

Now we confine us to a subset of profiles 7" such that all individuals prefer three alternatives x, y and z
to all other alternatives. Unanimity implies that the set of all individuals N is semi-decisive about every pair
of alternatives, and so it is a semi-decisive set. Thus, by monotonicity any social choice correspondence
does not choose any alternative other than x, y and z at all such profiles. We denote individual preferences

about x, y and z in this subset of profiles as follows.

Pl =(123), p? = (132), p* = (312). p* = (321). p° = (231), p°® = (213)

p! = (123) represents all preferences such that an individual prefers x to y to z to all other alternatives,
p' = (132) represents all preferences such that an individual prefers x to z to y to all other alternatives,
and so on. Although we confine our arguments to such a subset of profiles, Lemmal[Z.3with monotonicity
ensures that an individual who is semi-decisive about a pair of alternatives for this subset of profiles is a
dictator for all profiles.

From Lemma [Z.3]for the profiles in P we obtain the following result.

Lemma 7.6 If two groups S and S’, which are not disjoint, are semi-decisive sets, then their intersection

S N S’ is a semi-decisive set.
Proof. For three alternatives x, y and z we consider the following profile.

1. Individualsin S \ (S N S’) prefer z to x to y.
2. Individualsin S” \ (S N S’) prefer y to z to x.
3. Individuals in § N S’ prefer x to y to z.

4. Individualsin N \ (S U S’) prefer z to y to x.

Since S and S’ are semi-decisive sets, the social choice correspondence does not choose y and z. Thus,
it chooses x. Since only individuals in S N S’ prefer x to z and all other individuals prefer z to x, by

monotonicity S N S’ is semi-decisive for x against z. From Lemmal[Z3lit is a semi-decisive set. O

Further we confine us to a subset of P” such that all but one individual have the same preferences,
and consider a HEX game between one individual (denoted by individual k) and the set of individuals
other than k. Representative profiles are denoted by (pfc, pik), i=1,...,6, j =1,...,6, where p;'c is
individual k’s preference and p’ « denotes the common preference of individuals other than k. We relate
these profiles to the vertices of a 6 x 6 square HEX board as depicted in Figure 3. There are 36 vertices in
this HEX board. It represents a square HEX game. k and k' represent individual k’s regions, and —k and
—k’ represent the regions of the set of individuals other than k.

We consider the following marking and winning rules of square HEX games.

1. At a profile represented by a vertex of a square HEX board, if the social choice correspondence

chooses only the most preferred alternative of individual k which is different from the most preferred
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Figure 3: HEX game representing profiles

alternative of the individuals other than k, then this vertex is marked by a white circle; conversely
if the social choice correspondence chooses only the most preferred alternative of the individuals
other then k which is different from the most preferred alternative of individual k, then this vertex
is marked by a black circle.

2. A vertex which corresponds to any other profile is randomly marked by a white or a black circle.

3. The game has been won by individual k& (or the set of individuals other than k) if he has (or they
have) succeeded in marking a connected set of vertices which meets the boundary regions k and k’
(or —k and —k’).

A square HEX game is equivalent to the original HEX game. Therefore, there exists one winner for any

marking rule. Now we show the following theorem

Theorem 7.2 The HEX game theorem implies the existence of a dictator for any social choice correspon-

dence which satisfies the conditions of strategy-proofness, non-imposition and residual resoluteness.
Proof. Since diagonal vertices are not connected, the diagonal path
(P P10 (P P20+ (PR PE)

can not be a winning path. Consider a profile (p;, p®,) = ((123),(213)). Unanimity (Lemma [Z3) and
monotonicity mean that z is not chosen by the social choice correspondence at this profild.
By residual resoluteness only one alternative is chosen. Suppose that at this profile the social choice

correspondence chooses only y which is the most preferred alternative of the individuals other than k.

*5 Here X in the definition of monotonicity is {x, y}.
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Figure 4: Winning path of a square HEX game

Then, by monotonicity the social choice correspondence chooses only y at the following profiles.

[Note] At a profile ( p,i, pt i) only x is chosen by unanimity. Then, monotonicity means that z is not
chosen at (p}, p®,) and (p2, p®, 8. The fact that at (p}, p®,) only y is chosen and monotonicity
imply that z is not chosen at (p;., p>, ), and imply that x is not chosen at (p;, p>,) and (p7. p%,).

We can apply similar arguments to other cases.

The fact that the social choice correspondence chooses only y at a profile ( p,%, pik) and monotonicity

imply that the social choice correspondence chooses only y at the following profiles.

(PR, P21) (PE. P21, (s P%0)

Similarly consider a profile (p3, p%,) = ((312), (132)). By unanimity and monotonicity y is not chosen
by the social choice correspondence. By residual resoluteness only one alternative is chosen. Suppose that
at this profile the social choice correspondence chooses only x which is the most preferred alternative of
the individuals other than k. Then, by monotonicity the social choice correspondence chooses only x at

the following profiles.
(Pi-PLO- (P P24)

The fact that the social choice correspondence chooses only x at a profile ( p,‘{‘, pzk) and monotonicity

imply that the social choice correspondence chooses only x at the following profiles.

(P> P10 (PR- PR (PR P20)

*6 Here X1 and X, in the definition of monotonicity are {x} and {x, y}.
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Similarly consider a profile ( pg, p* ) = ((231), (321)). By unanimity and monotonicity x is not chosen
by the social choice correspondence. By residual resoluteness only one alternative is chosen. Suppose that
at this profile the social choice correspondence chooses only z which is the most preferred alternative of
the individuals other than k. Then, by monotonicity the social choice correspondence chooses only z at

the following profiles.
(i P20)s (PR p2y)

The fact that the social choice correspondence chooses only z at a profile ( pg, pik) and monotonicity

imply that the social choice correspondence chooses only z at the following profiles.

The vertices which correspond to all of these profiles are marked by black circles. Then, even when all
other vertices are marked by white circles, we obtain a marking pattern of a square HEX board as depicted
in Figure 4. The set of individuals other than k is the winner of this game. Therefore, for individual k to
be the winner of the square HEX game, the alternative chosen by the social choice correspondence must
coincide with the most preferred alternative of individual & at least at one of three profiles (p,i, pfk),
(pR. p%;) and (p7. p*,). Then, by monotonicity individual k is semi-decisive about at least one pair of
alternatives, and then by Lemma [Z3he is a dictator.

Ifforallk, (k =1,2,---,n),individual k is not the winner of all square HEX games between individual
k and the set of individuals other than k, then each set of individuals excluding one individual is the winner
of each square HEX game. By Lemmal[Z.6levery nonempty intersection of the sets of individuals excluding
one individual is a semi-decisive set. Then, the intersection of N \ {1}, N \ {2},---, N \ {n — 1} is a semi-
decisive set. But (N \ {1}) N (N \{2}) N--- (N \ {n —1}) = {n}. Thus, individual = is a dictator. Therefore,
the HEX game theorem implies the existence of a dictator for any social choice correspondence which

satisfies the conditions of strategy-proofness, non-imposition and residual resoluteness. O

By this theorem the HEX game theorem implies the Duggan-Schwartz theorem.

74 The Duggan-Schwartz theorem implies the HEX game theorem

Next we show that the Duggan-Schwartz theorem implies the HEX game theorem under an interpre-
tation of dictator. Similarly to the previous section, we confine us to a subset of profiles such that all
individuals prefer three alternatives x, y and z to all other alternatives, and the preferences of individuals
other than one individual (denoted by k) are the same. And we consider a square HEX game between
individual k and the set of individuals other than k. The dictator of a social choice correspondence is in-
terpreted as an individual who can determine the choice of the society when his most preferred alternative
and that of the other individuals are different, and in a HEX game he can mark tiles with his color in such
cases. Without loss of generality we assume that individual k is a dictator of a social choice correspon-
dence. We denote a vertex of a square HEX board which corresponds to a profile ( p,i, pi ) simply by

( p}{, pf ). If individual k is a dictator, the following vertices are marked be white circles.
(Pe- P2)s (P P2 (s P20 (- P20+ (- P20 (k- P20 (k- P23 (PR P)
(PR PL0)s (i P20)s (PR P20 (PR P20)s (i PLa)s (PF. p20). (PR P20)s (piés P3)

(P2 PL). (P2 P20, (PR P20). (PR PR). (e, pLy). (PE. P20, (PR P21). (P p2y)
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Figure 5: HEX game won by individual k

Then, we obtain Figure 5. Unmarked vertices, where the most preferred alternatives of all individuals
are the same, should be randomly marked. Clearly individual k is the winner of this HEX game. Thus,
the existence of a dictator for a social choice correspondence implies the existence of a winner for a HEX

game. Therefore, we obtain

Theorem 7.3 The Duggan-Schwartz theorem and the HEX game theorem are equivalent.

7.5 Concluding Remarks

We have considered the relationship between the HEX game theorem and the Duggan-Schwartz the-
orem, and have shown their equivalence. We think that the idea of this chapter can be applied to other

social choice theorems which argue the existence of a dictator for some social choice rules.
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Chapter 8

The HEX game theorem and the Arrow
impossibility theorem: the case of weak
orders

We will show that under some assumptions about marking rules of HEX games, the Arrow im-
possibility theorem that there exists no binary social choice rule which satisfies transitivity, Pareto
principle, independence of irrelevant alternatives and has no dictator when individual preferences
are weak orders is equivalent to the HEX game theorem that any HEX game has one winner. Be-
cause |Galel (1979) showed that the Brouwer fixed point theorem is equivalent to the HEX game
theorem, this chapter indirectly shows the equivalence of the Brouwer fixed point theorem and the
Arrow impossibility theorem. In|Chichilnisky|(1979) she showed the equivalence of her impossibil-
ity theorem in topological social choice theory (Chichilnisky (1980)) and the Brouwer fixed point
theorem, and|Baryshnikov|(1993) showed that the impossibility theorem in Chichilnisky|(1980) and
the Arrow impossibility theorem are very similar. Thus, |(Chichilnisky| (1979)), (1980) and |Barysh-

nikov!(1993) are precedents for the result — linking the Arrow impossibility theorem to a fixed point
theoremtll

*I This chapter is based on my paper of the same title which will be published in Metroeconomica, Blackwell.



72 Chapter 8 The HEX game theorem and the Arrow impossibility theorem

8.1 Introduction

Gale (1979) showed that the so called HEX game theorem that any HEX game has one winner is equiv-
alent to the Brouwer fixed point theorem. In this chapter we will show that under some assumptions
about marking rules of HEX games, the Arrow impossibility theorem that there exists no binary social
choice rule which satisfies transitivity, Pareto principle, independence of irrelevant alternatives and has no
dictator when individual preferences are weak orders is equivalent to the HEX game theorem.

In another paper Tanakal(2007al) we showed the equivalence of the HEX game theorem and the Arrow
impossibility theorem in the case where individual preferences are strong (or linear) orders, that is, indi-
viduals are never indifferent about any pair of two alternatives. In that paper we used a 6x6 HEX game.
On the other hand in this chapter we will show the equivalence in the case where individual preferences are
weak orders, that is, individuals may be indifferent about any pair of two alternatives. And in this chapter
we will use a 13x13 HEX game. The result of this chapter is not directly derived from the result of the

previous paper. The chief differences are as follows.

In the proof of Theorem[8.2lwe consider the social preference, properly speaking, the society’s most
preferred alternative at the following profiles of individual preferences about three alternatives x;,

X2 and X3.

(pR- P2) = (132,312)), (p'. p2p) = (231,321)), (p>, p2y) = (123,321))

( plz, pik) denotes a profile such that one individual (denoted by k) prefers x; to x3, prefers x; to x3
and he is indifferent between x; and x,, and all other individuals (denoted by —k) prefer x3 to x,
to x1. (p;?, p*,) denotes a profile such that individual k prefers x, to xy, prefers x; to x3 and he is
indifferent between x; and x3, and all other individuals prefer x5 to x5 to x1, and so on. The social
preferences at these profiles are determined by the social preferences at other profiles such that the
preferences of all individuals are strong orders, and the conditions of transitivity, Pareto principle

and independence of irrelevant alternatives.

Because|Gale|(1979) showed that the Brouwer fixed point theorem is equivalent to the HEX game theo-
rem, this chapter indirectly shows the equivalence of the Brouwer fixed point theorem and the Arrow im-
possibility theorem. In another paper Tanakal (2006a)) we directly showed this equivalence using a model
according to |Baryshnikov| (1993). But in that paper we used techniques of algebraic topology (homol-
ogy theory). Topological approaches to social choice problems have been initiated by (Chichilnisky|(1979)
and (1980). In her model a space of alternatives is a subset of Euclidean space, and individual prefer-
ences over this set are represented by normalized gradient fields. Her main result in |Chichilnisky| (1980)
is an impossibility theorem that there exists no continuous social choice rule which satisfies unanimity and
anonymity. Unanimity is weaker than Pareto principle, and anonymity is stronger than the condition of
non-existence of dictator. In|Chichilnisky|(1979) she showed the equivalence of her impossibility theorem
and the Brouwer fixed point theorem in the case where there are two individuals and the choice space is
a subset of 2-dimensional Euclidian space. |Baryshnikov| (1993) presented a topological approach to the

Arrow impossibility theorem in a discrete framework of social choice, and showed that the impossibility
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Figure 1: HEX game

theorem in [Chichilnisky| (1980) and the Arrow impossibility theorem are very similar from the point of
view of algebraic topology. Thus, |Chichilnisky| (1979), (1980) and [Baryshnikov| (1993) are precedents for
the result — linking the Arrow impossibility theorem to a fixed point theorem. See also|Chichilnisky|(1993))
in which her main results are summarized.

In the next section according to Gale (1979) we present an outline of the HEX game. In Section 8.3 we
will show that the HEX game theorem implies the Arrow impossibility theorem when individual prefer-
ences are weak orders. And in Section 8.4 we will show that the Arrow impossibility theorem implies the

HEX game theorem.

8.2 The HEX game

According to|Galel (1979) we present an outline of the HEX game. Figure 1 represents a 13 x 13 HEX
board. Generally a HEX game is represented by an n x n HEX board where n is a finite positive integer.
The rules of the game are as follows. Two players (called Mr. W and Mr. B) move alternately, marking
any previously unmarked hexagon or tile with a white (by Mr. W) or a black (by Mr. B) circle respectively.
The game has been won by Mr. W (or Mr. B) if he has succeeded in marking a connected set of tiles which
meets the boundary regions W and W’ (or, B and B’). A set S of tiles is connected if any two members of
the set 4 and A’ can be joined by a path P = (h = h',h?,... k™ = h’) where h' and h'*! are adjacent.
Figure 2 represents a HEX game which has been won by Mr. B.

About the HEX game|Galel (1979) has shown the following theorem.

Theorem 8.1 (The HEX game theorem) If every tile of the HEX board is marked by either a white or a

black circle, then there is a path connecting regions W and W’, or a path connecting regions B and B’.

Actually he has shown the theorem that any hex game can never end in a draw, and there always exists
at least one winner. But, from his intuitive explanation using the following example of river and dam, it is

clear that there exists only one winner of any hex game.
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Figure 2: HEX game won by Mr. B

Imagine that B and B’ regions are portions of opposite banks of the river which flow from W
region to W’ region, and that Mr. B is trying to build a dam by putting down stones. He will have
succeeded in damming the river if and only if he has placed his stones in a way which enables him

to walk on them from one bank (B region) to the other (B’ region).

The proof of Theorem[§8.T]and also the above intuitive argument do not depend on the rule “two players
move alternately”. Therefore, this theorem is valid for any marking rule.

Figure 3 is obtained by plotting the center of each hexagon, and connecting these centers by lines.
Rotating this graph 45° in anticlockwise direction, we obtain Figure 4. It is an equivalent representation
of the HEX board depicted in Figure 1. W and W' represent the regions of Mr. W, and B and B’ represent
the regions of Mr. B. We call it a square HEX board, and call a game represented by a square HEX board
a square HEX game. In Figure 4 we depict an example of winning marking by Mr. B. It corresponds to
the marking pattern in Figure 2. A set of marked vertices which represents one player’s victory is called a

winning path.

8.3 The HEX game theorem implies the Arrow impossibility theorem

There are m(> 3) alternatives and n(> 2) individuals. m and n are finite positive integers. The set
of individuals is denoted by N. Denote individual i’s preference by p;. A combination of individual
preferences, which is called a profile, is denoted by p(= (p1, p2,--- , pn)). The set of profiles is denoted by
P". The alternatives are represented by x;, i = 1,2,--- ,m. Individual preferences over the alternatives
are weak orders, that is, individuals strictly prefer one alternative to another, or are indifferent between
them. We assume the free triple property, that is, for each set of three alternatives individual preferences
are never restricted.

We consider a binary social choice rule which determines a social preference corresponding to each pro-

file. Binary social choice rules must satisfy the conditions of transitivity, Pareto principle and independence
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Figure 3: Conversion to square HEX game

of irrelevant alternatives (114 ). Transitive binary social choice rules are called social welfare functions. The

meanings of these conditions are as follows.

Transitivity If, according to a social welfare function, the society prefers an alternative x; to another
alternative x;, and prefers x; to another alternative xg, then the society must prefer x; to x.

Pareto principle When all individuals prefer x; to x;, the society must prefer x; to x;.

Independence of irrelevant alternatives (I1A) The social preference about every pair of two alternatives
x; and x; is determined by only individual preferences about these alternatives. Individual prefer-

ences about other alternatives do not affect the social preference about x; and x;.

The Arrow impossibility theorem states that there exists no social welfare function which satisfies Pareto
principle and IIA and has no dictator, or in other words there exists a dictator for any social welfare
function satisfying Pareto principle and IIA. A dictator is an individual whose strict preference always
coincides with the social preference.

According to[Sen|(1979) we define the following terms.

Almost decisiveness If, when all individuals in a group G prefer an alternative x; to another alternative
x;, and the other individuals (individuals in N \ G) prefer x; to x;, the society prefers x; to x;, then
G is almost decisive for x; against x;.

Decisiveness If, when all individuals in a group G prefer an alternative x; to another alternative x;, the
society prefers x; to x; regardless of the preferences of the other individuals, then G is decisive for

X; against x;.

G may consists of one individual. By Pareto principle N is almost decisive and decisive about every pair
of alternatives. If for a social welfare function an individual is decisive about every pair of alternatives,
then he is the dictator of the social welfare function.

Sen| (1979)(Lemma 3*a) and [Suzumural (2000)(Dictator Lemma) have shown the following result.
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w

Figure 4: Square HEX game with a winning path

Lemma 8.1 If one individual is almost decisive for one alternative against another alternative, then he is

the dictator of the social welfare function.

This lemma holds under the conditions of transitivity, Pareto principle and IIA. The conclusion of this
lemma is also valid in the case where not an individual but a group of individuals is almost decisive for

one alternative against another alternative. Thus, the following lemma is derived.

Lemma 8.2 If a group of individuals G is almost decisive for one alternative against another alternative,

then this group is decisive about every pair of alternatives.

Now we confine us to a subset of profiles P" such that all individuals prefer three alternatives xi, x,
and x3 to all other alternatives. Pareto principle implies that at all such profiles the society also prefers x,
x2 and x3 to all other alternatives. We denote individual preferences about x;, x, and x5 in this subset of

profiles as follows.

pl = (123), p? = (132), p? = (312), p* = (321), p° = (231), p® = (213),
p’ = (123), p® = (123), p° = (132). p'® = (312), p'' = (231), p"* = (213),
p" = (123)

p' = (123) represents all preferences such that an individual prefers x; to x, to x3 to all other alternatives,
p! = (123) represents all preferences such that an individual prefers x; to x, and x3 to all other alternatives
and is indifferent between x, and x3, p! = (132) represents all preferences such that an individual prefers
x1 and x3 to x, to all other alternatives and is indifferent between x; and x3, and so on. p! = (123)
represents a preference such that an individual is indifferent about x;, x, and x3. Although we confine

our arguments to such a subset of profiles, Lemma [§.T] with ITA ensures that an individual who is almost
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Figure 5: HEX game representing profiles

decisive about a pair of alternatives for this subset of profiles is the dictator for all profiles.

From Lemma 2 for the profiles in P we obtain the following result.

Lemma 8.3 If two groups G and G’, which are not disjoint, are almost decisive about a pair of alternatives,

then their intersection G N G’ is decisive about every pair of alternatives.

Proof By Lemmal82]G and G’ are decisive about every pair of alternatives. For three alternatives xi, x

and x3 we consider the following profile in P”.

1. Individualsin G \ (G N G’) prefer x5 to x; to x5.
2. Individuals in G’ \ (G N G’) prefer x; to x3 to x7.
3. Individuals in G N G’ prefer x; to x, to x3.

4. Individuals in N \ (G U G’) prefer x5 to x, to x;.

By the decisiveness of G and G’ and transitivity the society must prefer x; to x, to x3. Since only individ-
uals in G N G’ prefer x; to x3 and all other individuals prefer x5 to x;, G N G’ is almost decisive for x;

against x3 under ITA. From Lemma [8.2]it is decisive about every pair of alternatives. O

Further we confine us to a subset of P” such that all but one individual have the same preferences,
and consider a HEX game between one individual (denoted by individual k) and the set of individuals
other than k. Representative profiles are denoted by (pfc, pik), i=1,...,13, j = 1,...,13, where pfc
is individual k’s preference and p’ « denotes the common preference of the individuals other than k. We
relate these profiles to the vertices of a 13 x 13 square HEX board as depicted in Figure 5. There are 169
vertices in this HEX board. It represents a square HEX game. k and k' represent individual k’s regions,

and —k and —k’ represent the regions of the set of individuals other than k.
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We consider the following marking and winning rules of the square HEX game.

1. At a profile represented by a vertex of a square HEX board, if the society’s unique most preferred
alternative is the same as that of individual k£ and different from that of the individuals other than
k, or that of the individuals other than & is not unique, then this vertex is marked by a white circle;
conversely if the society’s unique most preferred alternative is the same as that of the individuals
other than k and different from that of individual k, or that of individual k is not unique, then this
vertex is marked by a black circle.
Hereafter we abbreviate the most preferred alternative by MPA.

2. The vertex which corresponds to any other profile is randomly marked by a white or a black circle.

3. The game has been won by individual k (or the set of individuals other than k) if he has (or they
have) succeeded in marking a connected set of vertices which meets the boundary regions k and k’
(or —k and —k’).

As a preliminary result we show.

Lemma 8.4 (Lemma 1 inBaryshnikov| (1993)) If the individual preferences about x; , x, and x3 are strong
(linear) orders, that is, the individuals are not indifferent about any pair of theses alternatives, then the

society’s preference about these alternatives are also strong order.

Proof. Assume that at a profile p individual k prefers x; to x, and the other individuals prefer x, to x;
and the society is indifferent between them. Suppose that at a profile p’ individual k prefers x; to x, to
x3 and the other individuals prefer x, to x3 to x1, and at a profile p” individual k prefers x; to x3 to x,
and the other individuals prefer x3 to x, to x;. By Pareto principle and IIA the society should prefer x;
and x; to x3 and should be indifferent between x; and x5 at p/, and it should prefer x3 to x; and x, and
should be indifferent between x; and x, at p”. Thus the ranking of x; and x3 depends on the position of
X5 in the preferences of individuals. It is a contradiction.

We can show other cases by similar procedures. O

From this lemma when the individual preferences about x; , x, and x3 are strong orders, the society’s
preference about these alternatives is also strong order.
A square HEX game is equivalent to the original HEX game. Therefore, there exists one winner for any

marking rule. Now we show the following result.
Theorem 8.2 The HEX game theorem implies the existence of a dictator for any social welfare function.

Proof. Since diagonal vertices are not connected, the diagonal path
(Pés PO (PR P2+ (PR P1)

can not be a winning path. Consider a profile (p,i, pfk) = ((123), (213)). By Pareto principle x3 is not
the society’s MPA. Suppose that at this profile the society’s MPA is x, which is the MPA of the individuals
other than k. Then, by Pareto principle and I1A the society’s MPA at the following profiles is x.

(Pr- P20 (PR PS4)

The fact that the society’s MPA at a profile (p7, p®, ) is x2, with Pareto principle and IIA, implies that the
society’s MPA at the following profiles is x5.

(P2 P2)- (P P20)- (PR pS0)
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Similarly consider a profile (p7. p2,) = ((312). (132)). By Pareto principle x5 is not the society’s MPA.
Suppose that at this profile the society’s MPA is x; which is the MPA of the individuals other than k.
Then, by Pareto principle and IIA the society’s MPA at the following profiles is x;.

The fact that the society’s MPA at a profile (p}, p?,) is x1, with Pareto principle and IIA, implies that the
society’s MPA at the following profiles is x;.

(Pr-PLO). (pg. PLo). (PR P2)

Similarly consider a profile ( pg, pik) = ((231), (321)). By Pareto principle x; is not the society’s MPA.
Suppose that at this profile the society’s MPA is x3 which is the MPA of the individuals other than k.
Then, by Pareto principle and ITA the society’s MPA at the following profiles is x3.

(P2 P20, (8. p%)

The fact that the society’s MPA at a profile ( pg, p* &) 18 x3, with Pareto principle and IIA, implies that the
society’s MPA at the following profiles is x3.

The results noted above mean that the society’s preference about any pair of alternatives among xy, x
and x3 coincides with the common preference of the individuals other than & when the individual prefer-
ences do not include indifference. Then, by Pareto principle and I1A the society’s MPA at the following

profiles is x3.

(pl. Pty = (123.321), (pg. pp) = (123,312), (pR. p2y) = (132,321)),

And the society’s MPA at the following profiles is x.
(P p2y) = (312,231)). (pg. p,) = (132,231))
Further, these results imply that the society’s MPA at the following profiles is x3.
(P p2) = (132.312)). (pi'. pp) = 231.321)), (p°. p2y) = (123,321)

The vertices which correspond to all of these profiles are marked by black circles. Then, we obtain a
marking pattern of a square HEX board as depicted in Figure 6. The set of individuals other than k is
the winner of this HEX game. Therefore, for individual & to be the winner of a square HEX game, the
society’s MPA must coincide with that of individual k at least at one of three profiles ( p,i, pfk), ( p,i, p? <)
and ( pg, p* ©)- It means that individual £ must be almost decisive about at least one pair of alternatives,
and then by Lemma [8.T] he is the dictator.

If for all k, (k = 1,2,---,n — 1), individual k is not the winner of any square HEX game between
individual k£ and the set of individuals other than k, then each set of individuals excluding one individual is
the winner of each square HEX game. By Lemmal[8.3levery nonempty intersection of the sets of individuals
excluding one individual (among 1 to n — 1) is decisive. Then, the intersection of N \ {1}, N \ {2}, ---,
N\ {n—1}isdecisive. But (N\{1}) NN \{2H)N--- (N \{n—1}) = {n}. Thus, individual n is the dictator.

Therefore, the HEX game theorem implies the existence of a dictator for any social welfare function. [

By this theorem the HEX game theorem implies the Arrow impossibility theorem.
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Figure 6: Winning path of a square HEX game
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Figure 7: HEX game won by individual &
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8.4 The Arrow impossibility theorem implies the HEX game theorem

Next we will show that the Arrow impossibility theorem implies the HEX game theorem under an in-
terpretation of dictator. Similarly to the previous section, we confine us to a subset of profiles such that
all individuals prefer three alternatives x;, x, and x3 to all other alternatives, and the preferences of in-
dividuals other than one individual (denoted by k) are the same. And we consider a square HEX game
between individual k and the set of individuals other than k. The dictator of a social welfare function is
interpreted as an individual who can determine the MPA of the society when his unigue MPA and that of
the other individuals are different, or his MPA is unique and that of the other individuals is not unique,
and in a HEX game he can mark tiles with his color in such cases. We denote a vertex of a square HEX
board which corresponds to a profile ( pf{, pi &) simply by ( 1’27 pi 0

First, consider the case where individual k is the dictator of a social welfare function. Then, the following

vertices are marked by white circles.
(Pr-P2o). (PR P20, (PR P20 (PR PR, (PR. P20 (PR P20)s (PR PER)
(Pr-PL). (PR P20 (PR P20 (PR PR, (PR P20 (PR P, (PE. PLY)
(P2~ PLR)

Then, we obtain Figure 7. Clearly individual k is the winner of this HEX game.

Next, consider the case where the dictator of a social welfare function is included in the set of individuals
other than k. Then, by symmetric consideration the set of individuals other than & is the winner of the
HEX game.

Thus, the existence of a dictator for a social welfare function implies the existence of a winner for a HEX

game. Therefore, we obtain

Theorem 8.3 The Arrow impossibility theorem and the HEX game theorem are equivalent.

8.5 Concluding Remarks

We have considered the relationship between the HEX game theorem and the Arrow impossibility the-

orem when individual preferences are weak orders, and have shown their equivalence.
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Chapter 9

Type two computability of social choice
functions and the Gibbard-Satterthwaite
theorem in an infinite society

This chapter investigates the computability problem of the Gibbard-Satterthwaite theorem (Gib-
bard| (1973), [Satterthwaite (1975)) of social choice theory in a society with an infinite number of
individuals (infinite society) based on Type two computability by [Weihrauch! (1995)), Weithrauch
(2000). There exists a dictator or there exists no dictator for any coalitionally strategy-proof social
choice function in an infinite society. We will show that if there exists a dictator for a social choice
function, it is computable in the sense of Type two computability, but if there exists no dictator it is
not computable. A dictator of a social choice function is an individual such that if he strictly prefers
an alternative (denoted by x) to another alternative (denoted by y), then it does not choose y, and
his most preferred alternative is always chosen. Coalitional strategy-proofness is an extension of
the ordinary strategy-proofness. It requires non-manipulability by coalitions of individuals as well

as by a single individual-ll.

9.1 Introduction

This chapter investigates the computability problem of the Gibbard-Satterthwaite theorem (Gibbard
(1973), Satterthwaite (1975)) of social choice theory in a society with an infinite number of individu-
als (infinite society) based on Type two computability by Weihrauch! (1995)), Weihrauchl (2000). Arrow’s
impossibility theorem |Arrow! (1963) shows that, with a finite number of individuals, for any social wel-
fare function (binary social choice rule which satisfies transitivity) there exists a dictator. In contrast
Fishburn| (1970)), Hansson| (1976) and [Kirman and Sondermann| (1972) show that in a society with an
infinite number of individuals (an infinite society), there exists a social welfare function without dicta-
tor. On the other hand, about strategy-proof social choice functions, with a finite number of individuals,
the Gibbard-Satterthwaite theorem (Gibbard| (1973), Satterthwaitel (1975)) shows that there exists a dic-

tator for any strategy-proof social choice function. In contrast |Pazner and Wesley| (1977)) shows that in

*I This chapter is based on my paper of the same title published in Applied Mathematics and Computation, Vol.
192, No. 1, pp. 168-174, 2007, Elsevier.
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an infinite society, there exists a coalitionally strategy-proof social choice function without dictatof®2. A
dictator of a social choice function is an individual such that if he strictly prefers an alternative (denoted
by x) to another alternative (denoted by y), then it does not choose y, and it chooses his most preferred
alternative. Coalitional strategy-proofness is an extension of the ordinary strategy-proofness. It requires
non-manipulability by coalitions of individuals as well as by a single individual.

In the next section we present the framework of this chapter and some preliminary results. In Section

9.3 we will show the following results.

1. There exists a dictator or there exists no dictator for any coalitionally strategy-proof social choice
function, and in the latter case all co-finite sets of individuals (sets of individuals whose comple-
ments are finite) are decisive sets (Theorem [9,]]).

2. If there exists a dictator, the social choice function is computable in the sense of Type two com-

putability, but if there exists no dictator it is not computable (Theorem [9.2)).

A decisive set for a social choice function is a set of individuals such that if individuals in the set prefer
an alternative (denoted by x) to another alternative (denoted by y), then the social choice function does
not choose y regardless of the preferences of other individuals.

Miharal (1997) presented an analysis about the ordinary Turing machine computability of social choice
rules. Since there are only countable number of ordinary Turing machines, he assumes that only countable
number of profiles of individual preferences are observable. But Type two machine can treat uncountable

input.

9.2 The framework and preliminary results

There are m(> 3) alternatives and a countably infinite number of individuals. m is a finite positive
integer. The set of alternatives is denoted by A. The set of individuals is denoted by N. The alternatives
are represented by x, y, z, w and so on. Individual preferences over the alternatives are transitive linear
(strict) orders, that is, they prefer one alternative to another alternative, and are not indifferent between
them. Denote individual i’s preference by >;. We denote x >; y when individual i prefers x to y. Since
there are a finite number of alternatives, the varieties of linear orders over the alternatives are finite. We
denote the set of individual preferences by X'. A combination of individual preferences, which is called a
profile, is denoted by p(= (>1,>2,:--)), p'(= (>],>5.--+)) and so on. The set of profiles is denoted by
Y® where w = {1,2,---} is the set of natural numbers. It represents the set of individuals.

We consider a social choice function f : ¥“ —> A which chooses at least one and at most one al-
ternative corresponding to each profile of the revealed preferences of individuals. We require that social
choice functions are coalitionally strategy-proof. This means that any group (coalition) of individuals can
not benefit by revealing preferences which are different from their true preferences, in other words, each
coalition of individuals must have an incentive to reveal their true preferences, and cannot manipulate
any social choice function. The coalitional strategy-proofness is an extension of the ordinary strategy-
proofness which requires only non-manipulability by an individual. We also require that social choice
functions are onto, that is, their ranges are A. The Gibbard-Satterthwaite theorem states that, with a finite

number of individuals, there exists a dictator for any strategy-proof social choice function, or in other

*2 [Taylor| (2003) is a recent book that discusses social choice problems in an infinite society.
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words there exists no social choice function which satisfies strategy-proofness and has no dictator. In con-
trast |Pazner and Wesley| (1977) shows that when the number of individuals in the society is infinite, there
exists a coalitionally strategy-proof social choice function without dictator. A dictator of a social choice
function is an individual whose most preferred alternative is always chosen by the social choice function.

According to|Weihrauch! (1995)), Weihrauch| (2000) we survey the definitions of Type two machine and
Type two computability, and consider the formulation of a social choice function computed by a Type two

machine.

Type two machine A Type two machine M (with one input tape) is defined by two components.

1. A Turing machine with a single one-way input tape, a single one-way output tape and finitely
many work tapes.

2. A type specification (Y7, Yy) with {¥7, Yy} € {X*, ¥®}. X denotes any finite alphabet. v =
{1,2,---} is the set of natural numbers. X'* is the set of all finite sequences >1>5 --- >; with
kewand >q,>5, - ,>r€ Y. And X = {>1>5 ---| =€ X} = {p|p : « —> X} is the set
of infinite sequences with elements from X.

The function fas : Y1 —> Y, computed by a Type two machine M is defined as follows:
(a) Case Yy = X*(finite output)
fu(y1) = w e X* if and only if M with input (y;) halts with result w on the output tape.
(b) Case Yy = Y (infinite output)
JSu(y1) = p € ¥¢ if and only if M with input (y;) computes forever writing the sequence
p on the output tape.
Type two computability Let X be a finite alphabet. Assume Y; C {X*, ¥“}. A function f : Y; — Y

is computable if and only if f = fjs for some Type two machine M.

A social choice function computed by a Type two machine A social choice function is defined as a
function f : ¥® — A. X? is the set of profiles, and A is the set of alternatives as alphabets. An

element of X¥¢, p € ¥¢, is a profile, and an element of A is an alternative.
Now we define the following termd*3.

Monotonicity Let x and y be two alternatives. Assume that at a profile p individuals in a group G prefer
x to y, all other individuals (individuals in N \ G) prefer y to x, and x is chosen by a social choice
function. If at another profile p’ individuals in G prefer x to y, then the social choice function does
not choose y regardless of the preferences of the individualsin N \ G.

Weak Pareto principle If all individuals prefer x to y, then any social choice function does not choose
y.

First we can show the following lemma.

Lemma 9.1 If a social choice function satisfies coalitional strategy-proofness, then it satisfies monotonicity

and weak Pareto principle.

Proof. See Section[0.3 0

*3 The concept monotonicity is according to [Batteau,Blin| (and Monjardet). It is equivalent to strong positive
association by Muller and Satterthwaite| (1975) when individual preferences are linear orders (do not include
indifference relations).
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Further we define the following two terms.

Decisive If, when all individuals in a group G prefer an alternative x to another alternative y, a social
choice function does not chooses y regardless of the preferences of other individuals, then G is
decisive for x against y.

Decisive set If a group of individuals is decisive about every pair of alternatives for a social choice func-

tion, it is called a decisive set for the social choice function.

The meaning of the term decisive is similar to that of the same term used in [Sen| (1979) for binary social
choice rules. G may consist of one individual. If for a social choice function an individual is decisive about
every pair of alternatives, then he is a dictator of the social choice function.

About the concept of decisiveness we can show the following result.

Lemma 9.2 Assume that a social choice function is coalitionally strategy-proof. If a group G is decisive

for one alternative against another alternative, then it is a decisive set.

Proof. See Section[0.6 O

The implications of this lemma are similar to those of Lemma 3*a in[Sen| (1979) and Dictator Lemma
in[Suzumural (2000) for binary social choice rules.

Next we can show the following result.

Lemma 9.3 Assume that a social choice function is coalitionally strategy-proof. If two groups G and G/,

which are not disjoint, are decisive sets, then their intersection G N G’ is a decisive set.
Proof. Let x, y and z be given three alternatives, and consider the following profile.

1. Individualsin G \ (G N G’) prefer z to x to y to all other alternatives.
2. Individuals in G’ \ (G N G') prefer y to z to x to all other alternatives.
3. Individuals in G N G’ prefer x to y to z to all other alternatives.

4. Individuals in N \ (G U G’) prefer z to y to x to all other alternatives.

Since G and G’ are decisive sets, the social choice function chooses x. Only individuals in G N G’ prefer x
to z and all other individuals prefer z to x. Thus, by monotonicity G N G’ is decisive for x against z. By
Lemma[0.2]it is a decisive set. O

Note that G and G’ can not be disjoint. Assume that G and G’ are disjoint. If individuals in G prefer
x to y to all other alternatives, and individuals in G’ prefer y to x to all other alternatives, then neither G
nor G’ can be a decisive set.

This lemma implies that the intersection of a finite number of decisive sets is also a decisive set.

9.3 Type two computability of coalitionally strategy-proof social
choice functions
Consider profiles such that one individual (denoted by i) prefers x to y to z to all other alternatives,

and all other individuals prefer z to x to y to all other alternatives. Denote such a profile by p’. By weak

Pareto principle any social choice function chooses x or z. If a social choice function chooses x at p’ for
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some i, then by monotonicity individual i is decisive for x against z, and by Lemma [9.2 he is a dictator.
On the other hand, if the social choice function chooses z at p’ foralli € N, then there exists no dictator,
and a group N \ {i} is a decisive set for alli € N. By Lemma[@.3]in the latter case all co-finite sets (sets of

individuals whose complements are finite sets) are decisive sets. Thus, we obtain the following theorem.

Theorem 9.1 For any coalitionally strategy-proof social choice function there exists a dictator or there

exists no dictator, and in the latter case all co-finite sets are decisive sets.

Let partition the set of individuals into a finite number of groups G1, G,,---, Gx. Each group may
include a finite or an infinite number of individuals. If there exists no dictator, all co-finite sets are decisive
sets, and then every finite group is not a decisive set. Therefore, the decisive set must be an infinite group,

and we obtain the following result.

Lemma 9.4 Suppose that there exists no dictator for a social choice function. Let partition the set of
individuals into a finite number of groups G1, G»,--- , Gi. Each group may include a finite or an infinite

number of individuals. Then, one of infinite groups is a decisive set.
Finally we show the following main result of this chapter.

Theorem 9.2 1. If there exists a dictator for a social choice function, then it is computable in the sense
of Type two computability.

2. If there exists no dictator for a social choice function, then it is not computable.

Proof 1. Assume that individual i (€ w) is a dictator of a social choice function. A Type two machine
can determine the choice of the society from the i-th input, and then it halts.

2. Let partition the individuals into a finite number of groups corresponding to the preferences of
individuals in each group. Consider a profile p € X'® such that in such a partition only one group
includes an infinite number of individuals. Then, by Lemma[0.4]this group is a decisive set. But any
Type two machine can not determine which group is an infinite group in finite steps, and it can not
halt. Therefore, the social choice function is not computable.

O

9.4 Concluding Remarks

We have examined the Gibbard-Satterthwaite theorem of social choice theory in an infinite society. The
assumption of an infinite society seems to be unrealistic. But|Mihara! (1997) presented an interpretation
of an infinite society based on a finite number of individuals and a countably infinite number of uncertain
states.

In this chapter we assumed that individual preferences are linear orders, that is, they are not indifferent
about any pair of alternatives. In the case of weak orders, which include indifference relations, a social
choice function may not be computable even when there exists a dictator. Consider a social choice function
such that when its dictator’s most preferred alternatives are not unique, the society’s choice is determined
by preferences of a group of individuals with an infinite number of individuals. Then this social choice

function is not computable.



9.5 Proof of Lemmal0.1] 87

9.5 Proof of Lemma

We use notations in the definition of monotonicity.

1. (Monotonicity) Let z be an arbitrary alternative other than x and y. Assume that at a profile p”
individuals in G prefer x to y to z, and other individuals prefer y to x to z. If, when the preferences
of some individuals in G change from >; (their preferences at p) to >/ (their preferences at p”), x
is not chosen by the social choice function, then they can gain benefit by revealing their preferences
>; when their true preferences are >7. Thus, the social choice function continues to choose x in
this case. By the same logic, when the preferences of all individuals in G change to their preferences
at p”, the social choice function chooses x. Next, if, when the preferences of some individuals in
N \ G change from >; to >, the social choice function chooses y, then they can gain benefit by
revealing their preferences > when their true preferences are >;. On the other hand, if z is chosen
in this case, they can gain benefit by revealing their preferences >; when their true preferences are
>7. Thus, x must be chosen. By the same logic, when the preferences of all individuals change to
their preferences at p”, the social choice function chooses x.

Next, if, when the preferences of some individuals in G change from > to >/ (their preferences
at p’), the alternative chosen by the social choice function changes directly from x to y, then they
can gain benefit by revealing their preferences > when their true preferences are >. Thus, the
alternative chosen by the social choice function does not directly change from x to y in this case.
By the same logic, when the preferences of all individuals in G change to their preferences at p’,
the alternative chosen by the social choice function does not directly change from x to y. Further,
if, when the preferences of some individuals in N \ G change from >/ to >/, the alternative chosen
by the social choice function changes directly from x to y, then they can gain benefit by revealing
their preference > when their true preferences are >;. By the same logic, when the preferences of
all individuals change to their preferences at p’, the alternative chosen by the social choice function
does not directly change from x to y.

There is a possibility, however, that the alternative chosen by the social choice function changes
from x through w(# x,y) to y in transition from p” to p’. If, when the preferences of some
individuals change, the alternative chosen by the social choice function changes from x to w, and
further when the preferences of other some individuals (denoted by i) change, the alternative chosen
by the social choice function changes to y, they have incentives to reveal their preferences >, when
their true preferences are > because they prefer y to w at p”. Therefore, y is not chosen by the
social choice function at p’.

2. (Weak Pareto principle) Let p be a profile at which all individuals prefer x to y, and p’ be a profile
at which x is chosen by the social choice function. Assume that at another profile p” all individuals
prefer x to y to all other alternatives. If, when the preferences of some individuals change from >/
to >7, the social choice function does not choose x, then they can gain benefit by revealing their
preferences > when their true preferences are ;. Thus, x is chosen in this case. By the same logic,
when the preferences of all individuals change to their preferences at p”, x is chosen. Since at p”
and at p all individuals prefer x to y, monotonicity (proved in (1)) implies that y is not chosen by

the social choice function at p.
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9.6 Proof of Lemma

1. Case 1: There are more than three alternatives.

Assume that G is decisive for x against y. Let z and w be given alternatives other than x and y.
Consider the following profile.

(a) Individuals in G prefer z to x to y to w to all other alternatives.

(b) Other individuals prefer y to w to z to x to all other alternatives.

By weak Pareto principle the social choice function chooses y or z. Since G is decisive for x against
v, z is chosen. Then, by monotonicity the social choice function does not choose w so long as the
individuals in G prefer z to w. It means that G is decisive for z against w. From this result by
similar procedures we can show that G is decisive for x (or y) against w, for z against x (or y), and
for y against x. Since z and w are arbitrary, G is decisive about every pair of alternatives, that is, it

is a decisive set.

. Case 2: There are only three alternatives x, y and z.

Assume that G is decisive for x against y. Consider the following profile.

(a) Individualsin G prefer x to y to z.

(b) Other individuals prefer y to z to x.

By weak Pareto principle the social choice function chooses x or y. Since G is decisive for x against
¥, x is chosen. Then, by monotonicity the social choice function does not choose z so long as the
individuals in G prefer x to z. It means that G is decisive for x against z. Similarly we can show
that G is decisive for z against y considering the following profile.

(a) Individuals in G prefer z to x to y.

(b) Other individuals prefer y to z to x.

By similar procedures we can show that G is decisive for y against z, for z against x, and for y

against x.
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Chapter 10

The Arrow impossibility theorem of
social choice theory in an infinite society
and LPO (Limited principle of
omniscience)

This chapter is an attempt to examine the main theorems of social choice theory from the viewpoint
of constructive mathematics. We examine the Arrow impossibility theorem (Arrow! (1963)) in a
society with an infinite number of individuals (infinite society). We will show that the theorem
that there exists a dictator or there exists no dictator for any binary social choice rule satisfying
transitivity, Pareto principle and independence of irrelevant alternatives in an infinite society is
equivalent to LPO (Limited principle of omniscience). Therefore, it is non-constructive. A dictator
is an individual such that if he strictly prefers an alternative to another alternative, then the society

must also strictly prefer the former to the latterl,

10.1 Introduction

This chapter is an attempt to examine the main theorems of social choice theory from the viewpoint of
constructive mathematics. Arrow’s impossibility theorem (Arrowl (1963)) shows that, with a finite number
of individuals, for any social welfare function (transitive binary social choice rule) which satisfies Pareto
principle and independence of irrelevant alternatives (ITA) there exists a dictator. A dictator is an individ-
ual such that if he strictly prefers an alternative to another alternative, then the society must also strictly
prefer the former to the latter. On the other hand, [Fishburn| (1970), [Hansson| (1976)) and [Kirman and
Sondermann! (1972)) show that, in a society with an infinite number of individuals (infinite society), there
exists a social welfare function satisfying Pareto principle and ITA without dictator2.

In this chapter we will show that the theorem that there exists a dictator or there exists no dictator for
any social welfare function satisfying Pareto principle and ITA in an infinite society is equivalent to LPO

(Limited principle of omniscience). Therefore, it is non-constructive.

*I This chapter is based on my paper of the same title which will be published in Applied Mathematics E-Notes,
National Tsing Hua University (Taiwan).
*2 [Taylor| (2003) is a recent book that discusses social choice problems in an infinite society.
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The omniscience principles are general statements that can be proved classically but not constructively,
and are used to show that other statements do not admit constructive proofd™3. This is done by showing
that the statement implies the omniscience principle. The strongest omniscience principle is the law of

excluded middle. A weaker one is the following limited principle of omniscience (abbreviated as LPO).

LPO (Limited principle of omniscience) Given a binary sequence a,,

n € N(the set of positive integers), either a,, = 0 for all n or a,, = 1 for some n.

In the next section we present the framework of this chapter and some preliminary results. In Section

10.3 we will show the following results.

1. There exists a dictator or there exists no dictator for any social welfare function satisfying Pareto
principle and ITA, and in the latter case all co-finite sets of individuals (sets of individuals whose
complements are finite) are decisive sets (Theorem 10.1).

2. Theorem 10.1 is equivalent to LPO (Theorem 10.2).

A decisive set is a set of individuals such that if individuals in the set prefer an alternative (denoted by
x) to another alternative (denoted by y), then the society prefers x to y regardless of the preferences of

other individuals.

10.2 The framework and preliminary results

There are more than two (finite or infinite) alternatives and a countably infinite number of individuals.
The set of individuals is denoted by N. The set of alternatives is denoted by A. N and A are discrete
setdd. For each pair of elements i, j of N we have i = j ori # j, and for each pair of elements x, y of
A we have x = y or x # y. Each subset of N is detachable. Thus, for each individual i of N and each
subset / of N we havei € I ori ¢ I. The alternatives are represented by x, y, z, w and so on. Denote
individual i’s preference by >;. We denote x >; y when individual i prefers x to y. Individual preferences
over the alternatives are transitive weak orders, and they are characterized constructively according to
Bridges (1999). About given three alternatives x, y and z individual i’s preference satisfies the following

properties.

1. If x >; y, then —=(y >; x).

2. If x >; y, thenforeachz € Aeitherx >; zorz >; y.
Preference-indifference relation 2; and indifference relation ~; are defined by

e x z; yifandonlyif Vz € A(y >; z = x >; z),

e x ~; yifandonlyif x z; y and y Zz; x.
Then, the following results are derived.

o —(x >; x).

e x >; yentails x =; y.

*3 About omniscience principles we referred to/Bridges and Richman|(1987), Bridges and Vi{a|(2006), Mandelkern
(1983) and IMandelkern| (1989).
*4 About details of the concepts of discrete set and detachable set, see[Bridges and Richman| (1987).
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e The relations >;, Z; are transitive, and x =; y >; z entails x >; z.

e x z; yifand onlyif =(y >; x).

As demonstrated by Bridges (1999) we can not prove constructively that x >; y if and only if —=(y =; x).
A combination of individual preferences, which is called a profile, is denoted by p(= (>1,>2,:-*)),
p'(= (>}.>5,---)) and so on.
We consider a binary social choice rule which determines a social preference corresponding to each
profile. Social preferences are defined similarly to individual preferences. We denote x > y when the
society strictly prefers x to y. The social preference is denoted by > at p, by >’ at p’ and so on, and it

satisfies the following conditions.

1. PL: If x > y, then —(y > x).

2. P2: If x > y, then for each z € A either x > z or z > y.
x zZ y and x ~ y are defined as follows.

e x z yifandonlyif Vz € A(y > z = x > z2),

e x ~yifandonlyifx Z yand y Z x.

Then, the following results are derived.

=(x > x)

x > yentails x Z y.

The relations >, X are transitive, and x = y > z entails x > z.

x % yifand only if =(y > x).

Social preferences are further required to satisfy Pareto principle and independence of irrelevant alterna-

tives (I14). The meanings of these conditions are as follows.

Pareto principle When all individuals prefer x to y, the society must prefer x to y.
Independence of irrelevant alternatives (I1A) The social preference about every pair of two alternatives
x and y is determined by only individual preferences about these alternatives. Individual preferences

about other alternatives do not affect the social preference about x and y.

A binary social choice rule which satisfies transitivity is called a social welfare function. Arrow’s impossibil-
ity theorem (Arrow|(1963)) shows that, with a finite number of individuals, for any social welfare function
satisfying Pareto principle and ITA there exists a dictator. In contrast|Fishburnl (1970)), [Hansson! (1976))
and [Kirman and Sondermann| (1972) show that when the number of individuals in the society is infinite,
there exists a social welfare function satisfying Pareto principle and ITA without dictator. A dictator is an
individual such that if he strictly prefers an alternative to another alternative, then the society must also
strictly prefer the former to the latter.

According to definitions in[Senl (1979) we define the following terms.

Almost decisiveness If, when all individuals in a (finite or infinite) group G prefer an alternative x to
another alternative y, and other individuals (individuals in N \ G) prefer y to x, the society prefers
x toy (x > y), then G is almost decisive for x against y.

Decisiveness If, when all individuals in a group G prefer x to y, the society prefers x to y regardless of



92 Chapter 10 Arrow impossibility theorem and LPO

the preferences of other individuals, then G is decisive for x against y.
Decisive set If a group of individuals is decisive about every pair of alternatives, it is called a decisive

set.

A decisive set may consist of one individual. If an individual is decisive about every pair of alternatives
for a social welfare function, then he is a dictator of the social welfare function. Of course, there exists at
most one dictator.

First about decisiveness we show the following lemma.

Lemma 10.1 If a group of individuals G is almost decisive for an alternative x against another alternative

v, then it is decisive about every pair of alternatives, that is, it is a decisive set.
Proof. See Section[10.5]

The implications of this lemma are similar to those of Lemma 3*a in[Senl (1979) and Dictator Lemma

in[Suzumural (2000). Next we show the following lemma.
Lemma 10.2 If G; and G, are decisive sets, then G; N G, is also a decisive set.

Proof. Let x, y and z be given three alternatives, and consider the following profile.

1. Individuals in G; \ G; (denoted by i): z >; x >; y
2. Individuals in G, \ G; (denoted by j): y >; z >; x
3. Individuals in G; N G, (denoted by k): x > y >k 2
4. Other individuals (denoted by [): z >; y >; x

Since G, and G, are decisive sets, the social preference is x > y and y > z. Then, by transitivity the
social preference about x and z should be x > z. Only individuals in G; N G, prefer x to z, and all other
individuals prefer z to x. Thus, G; N G, is almost decisive for x against z. Then, by Lemma 10.1 itis a

decisive set.

Note that G and G, can not be disjoint. Assume that G; and G, are disjoint. If individuals in G prefer
x to y, and individuals in G, prefer y to x, then neither G| nor G, can be a decisive set.

This lemma implies that the intersection of a finite number of decisive sets is also a decisive set.

10.3 Existence of social welfare function satisfying Pareto principle
and I1A without dictator and LPO

Consider profiles such that one individual (denoted by i) prefers x to y to z, and all other individuals
prefer z to x to y. Denote such a profile by p’. By Pareto principle the social preference about x and y
is x > y. By the property of constructively defined social preference (P2) the social preference is x > z
orz = y. Ifitis x > z at p’ for some i, then by IIA individual i is almost decisive for x against z, and
by Lemma 10.1 he is a dictator. On the other hand, if the social preference is z > y at p/ foralli € N,
then there exists no dictator. In this case by ITA, Lemma 10.1 and 10.2 all co-finite sets (sets of individuals

whose complements are finite sets) are decisive sets. Thus, we obtain

Theorem 10.1 For any social welfare function satisfying Pareto principle and IIA there exists a dictator

or there exists no dictator, and in the latter case all co-finite sets are decisive sets.

But we can show the following theorem.
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Theorem 10.2 Theorem 10.1 is equivalent to LPO.

Proof. Define a binary sequence (a;) as follows.

a; = 1 fori e N if the social preference about x and z at p’ is x > z

a; = 0fori e N if the social preference about y and z at p’isz > y

The condition of LPO for this binary sequence is as follows.

LPO (Limited principle of omniscience)

a; =0foralli e Nora; = 1forsomei € N
From the arguments before Theorem 10.1 it is clearly equivalent to Theorem 10.1.

Note x > z and z > y are not consistent at p’ for each i. Assume x > z and z > y at p’, and consider
the following profile.
1. Individuali:y >; x >; z
2. Other individuals (denoted by j): z >; y >; x
By ITA the social preference is x > z and z > y. Then, by transitivity the social preference about
x and y must be x > y. It means —(y > x). But by Pareto principle the social preference must be

y > x. Therefore, x > z and z > y are not consistent at p'.

10.4 Concluding Remarks

We have examined the Arrow impossibility theorem of social choice theory in an infinite society, and
have shown that the theorem that there exists a dictator or there exists no dictator for any social welfare
function satisfying Pareto principle and I1A in an infinite society is equivalent to LPO (Limited principle of
omniscience), and so it is non-constructive. The assumption of an infinite society seems to be unrealistic.
ButlMiharal(1997) presented an interpretation of an infinite society based on a finite number of individuals

and a countably infinite number of uncertain states.

10.5 Proof of Lemma 10.1

1. Case 1: There are more than three alternatives.
Let z and w be alternatives other than x and y, and consider the following profile.
(a) Individuals in G (denoted by i): z >; x >; y >; w.
(b) Other individuals (denoted by j): y >; x,z >; x and y >; w. Their preferences about z and

w are not specified.

By Pareto principle the social preferenceis z > x and y > w. Since G is almost decisive for x against
v, the social preference is x > y. Then, by transitivity the social preference should be z > w. This
means that G is decisive for z against w. From this result we can show that G is decisive for x (or y)
against w, for z against x (or y), for y against x, and for x against y. Since z and w are arbitrary,
G is decisive about every pair of alternatives, that is, it is a decisive set.

2. Case 2: There are only three alternatives x, y and z.

Consider the following profile.
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(a) Individualsin G (denoted by i): x =; y >; z.

(b) Other individuals (denoted by j): y >; z, y >, x, and their preferences about x and z are not
specified.

By Pareto principle the social preference is y > z. Since G is almost decisive for x against y, the

social preference is x > y. Then, by transitivity the social preference should be x > z. This means

that G is decisive for x against z. Similarly we can show that G is decisive for z against y considering

the following profile.

(a) Individualsin G (denoted by i): z =; x =; y.

(b) Other individuals (denoted by j): z >; x, y >; x, and their preferences about y and z are not
specified.

By similar procedures we can show that G is decisive for y against z, for z against x, for y against

x, and for x against y.
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Chapter 11

The Gibbard-Satterthwaite theorem of
social choice theory in an infinite society
and LPO (Limited principle of
omniscience)

This chapter is an attempt to examine the main theorems of social choice theory from the viewpoint
of constructive mathematics. We examine the Gibbard-Satterthwaite theorem (Gibbard|(1973),Sat-
terthwaitel(1975)) in a society with an infinite number of individuals (infinite society). We will show
that the theorem that any coalitionally strategy-proof social choice function may have a dictator
or has no dictator in an infinite society is equivalent to LPO (Limited principle of omniscience).
Therefore, it is non-constructive. A dictator of a social choice function is an individual such that if
he strictly prefers an alternative (denoted by x) to another alternative (denoted by y), then the social
choice function chooses an alternative other than y. Coalitional strategy-proofness is an extension
of the ordinary strategy-proofness. It requires non-manipulability for coalitions of individuals as

well as for a single individualt]

11.1 Introduction

This chapter is an attempt to examine the main theorems of social choice theory from the viewpoint
of constructive mathematics. The Gibbard-Satterthwaite theorem (Gibbard! (1973), Satterthwaite (1975))
shows that, with a finite number of individuals, there exists a dictator for any strategy-proof social choice
function. In contrast [Pazner and Wesley| (1977) shows that in an infinite society, there exists a coalition-
ally strategy-proof social choice function without dictatod, A dictator of a social choice function is an
individual such that if he strictly prefers an alternative (denoted by x) to another alternative (denoted by
y), then the social choice function chooses an alternative other than y, and it chooses one of his most
preferred alternatives. Coalitional strategy-proofness is an extension of the ordinary strategy-proofness.

It requires non-manipulability for coalitions of individuals as well as for a single individual.

*I This chapter is based on my paper of the same title published in Applied Mathematics and Computation, Vol.
193, No. 2, pp. 475-481, 2007, Elsevier.
*2 [Taylor| (2003) is a recent book that discusses social choice problems in an infinite society.
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In this chapter we will show that the theorem that any coalitionally strategy-proof social choice function
may have a dictator or has no dictator in an infinite society is equivalent to LPO (Limited principle of
omniscience). Therefore, it is non-constructive.

The omniscience principles are general statements that can be proved classically but not constructively,
and are used to show that other statements do not admit constructive proofs®3. This is done by showing
that the statement implies the omniscience principle. The strongest omniscience principle is the law of

excluded middle. A weaker one is the following limited principle of omniscience (abbreviated as LPO).

Limited principle of omniscience (LPO) Given a binary sequence a;,

n € N(the set of positive integers), either a,, = 0 for all n or a,, = 1 for some n.

In the next section we present the framework of this chapter and some preliminary results. In Section

12.3 we will show the following results.

1. Any coalitionally strategy-proof social choice function may have a dictator or has no dictator, and
in the latter case all co-finite sets of individuals (sets of individuals whose complements are finite)
are decisive sets (Theorem [IT.T)).

2. Theorem [T Ilis equivalent to LPO (Theorem [11.2).

A decisive set for a social choice function is a set of individuals such that if individuals in the set prefer
an alternative (denoted by x) to another alternative (denoted by y), then the social choice function chooses

an alternative other than y regardless of the preferences of other individuals.

11.2 The framework and preliminary results

There are m(> 3) alternatives and a countably infinite number of individuals. m is a finite positive
integer. The set of individuals is denoted by N. The set of alternatives is denoted by A. N and A are
discrete set$*d. For each pair of elements i, j of N we havei = j ori # j, and for each pair of elements
x, y of A wehave x = y or x # y. Each subset of N is a detachable set. Thus, for each individual
i of N and each subset / of N we havei € [ ori ¢ [. The alternatives are represented by x, y, z,
w and so on. Denote individual i’s preference by >;. We denote x >; y when individual i prefers x
to y. Individual preferences over the alternatives are transitive weak orders, and they are characterized
constructively according to Bridges Bridges| (1999). About given three alternatives x, y and z individual

i’s preference satisfies the following conditions.

1. If x >; y, then =~(y >; x).

2. If x >; y, then for each z € A either x >; zorz >; y.
Preference-indifference relation =; and indifference relation ~; are defined by

e x z; yifandonlyif Vz € A(y >; z = x >; z),

e x ~; yifandonlyif x z; yand y Z; x.

*3 About omniscience principles we referred to/Bridges and Richman|(1987), Bridges and Vi{a|(2006), Mandelkern
(1983) and IMandelkern| (1989).
*4 About details of the concepts of discrete set and detachable set, see[Bridges and Richman| (1987).
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Then, the following results are derived.

e —(x >; X).
e x >; yentails x Z; y.
e The relations >;, Z; are transitive, and x Z; y >; z entails x >; z.

~

e x z; yifand only if —=(y >; x).

As demonstrated by |Bridges (1999) we can not prove constructively that x >; y if and only if —~(y Xz; x).

A combination of individual preferences, which is called a profile, is denoted by p(= (>1,>2,:-+)),
p'(= (>}.>5.--+)) and so on.

We consider social choice functions which choose at least one and at most one alternative corresponding
to each profile of the revealed preferences of individuals. We require that social choice functions are coali-
tionally strategy-proof. This means that any group (coalition) of individuals can not benefit by revealing
preferences which are different from their true preferences, in other words, each coalition of individu-
als must have incentives to reveal their true preferences, and they cannot manipulate any social choice
function. The coalitional strategy-proofness is an extension of the ordinary strategy-proofness which re-
quires only non-manipulability by an individual. We also require that social choice functions are onto,
that is, their ranges are A. The Gibbard-Satterthwaite theorem states that, with a finite number of indi-
viduals, there exists a dictator for any strategy-proof social choice function, or in other words there exists
no social choice function which satisfies strategy-proofness and has no dictator. In contrast|Pazner and
Wesley|(1977) shows that when the number of individuals in the society is infinite, there exists a coalition-
ally strategy-proof social choice function without dictator. A dictator of a social choice function is an
individual one of whose most preferred alternatives is always chosen by the social choice function.

Now we define the following terms.

Decisive If, when all individuals in a group G prefer an alternative x to another alternative y, a social
choice function chooses an alternative other than y regardless of the preferences of other individu-
als, then G is decisive for x against y.

Decisive set If a group of individuals is decisive about every pair of alternatives for a social choice func-

tion, it is called a decisive set for the social choice function.

The meaning of the term decisive is similar to that of the same term used in [Sen| (1979) for binary social
choice rules. G may consist of one individual. If for a social choice function an individual is decisive about
every pair of alternatives, then he is a dictator of the social choice function.

Further we define the following two termd.

Monotonicity Let x and y be two alternatives. Assume that at a profile p individuals in a group G prefer
x to y, all other individuals (individuals in N \ G) prefer y to x, and x is chosen by a social choice
function. If at another profile p’ individuals in G prefer x to y, then the social choice function
chooses an alternative other than y regardless of the preferences of the individualsin N \ G.

Weak Pareto principle If all individuals prefer x to y, then every social choice function chooses an al-

ternative other than y.

*5 The concept monotonicity is according to[Batteau,Blin| (and Monjardet). It is different from stzrong positive as-
sociation by|Muller and Satterthwaite! (1975) when individual preferences are weak orders (include indifference
relations).
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We define these terms so as to have constructive nature, and they are slightly different from the definitions
in Tanakal (2007b).

We can show the following lemmas.

Lemma 11.1 If a social choice function satisfies coalitional strategy-proofness, then it satisfies monotonic-

ity and weak Pareto principle.
Proof. See Section[IT.3 O

Lemma 11.2 Assume that a social choice function is coalitionally strategy-proof. If a group G is decisive

for one alternative against another alternative, then it is a decisive set.

Proof. See Section[IT.6 O

The implications of this lemma are similar to those of Lemma 3*a in [Senl (1979) and Dictator Lemma

in[Suzumural (2000) for binary social choice rules.

Lemma 11.3 Assume that a social choice function is coalitionally strategy-proof. If two groups G and G’

are decisive sets, then their intersection G N G’ is a decisive set.

Proof. See Section[IT.71 O

Note that G and G’ can not be disjoint. Assume that G and G’ are disjoint. If individuals in G prefer
x to y to all other alternatives, and individuals in G’ prefer y to x to all other alternatives, then neither G
nor G’ can be a decisive set. This lemma implies that the intersection of a finite number of decisive sets is
also a decisive set.

The proofs of these lemma are almost the same as proofs of Lemma 1, 2, 3 in|Tanakal (2007b)). But in

this chapter we try to present constructive proofs, in particular, the proof of Lemma [[T.1l

11.3 Existence of coalitionally strategy-proof social choice function
without dictator and LPO

Consider profiles such that one individual (denoted by i) prefers x to y to z to all other alternatives,
and all other individuals prefer z to x to y to all other alternatives. Denote such a profile by p’. By weak
Pareto principle any social choice function chooses x or z. If a social choice function chooses x at p for
some i, then by monotonicity individual i is decisive for x against z, and by Lemma [IT.2lhe is a dictator.
On the other hand, if a social choice function chooses z at p’ for all i € N, then there exists no dictator,
and a group N \ {i} is a decisive set for alli € N. By Lemma[I1.3]in the latter case all co-finite sets (sets

of individuals whose complements are finite sets) are decisive sets. Thus, we obtain the following theorem.

Theorem 11.1 Any coalitionally strategy-proof social choice function may have a dictator or has no dic-

tator, and in the latter case all co-finite sets are decisive sets.
But we can show the following theorem.

Theorem 11.2 Theorem [T Ilis equivalent to LPO.
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Proof. We define a binary sequence (a;) as follows.

a; = 1 for i € N if the social choice function chooses x at p'

a; = 0 for i € N if the social choice function chooses z at p’
The condition of LPO for this binary sequence is as follows.

Limited principle of omniscience (LPO)

a; =0foralli e Nora; = 1forsomei € N

From the arguments before Theorem [T Tlit is clearly equivalent to Theorem[IT.1l O

11.4 Concluding Remarks

We have examined the Gibbard-Satterthwaite theorem of social choice theory in an infinite society,
and have shown that the theorem that any coalitionally strategy-proof social choice function may have a
dictator or has no dictator in an infinite society is equivalent to LPO (Limited principle of omniscience),
and so it is non-constructive. The assumption of an infinite society seems to be unrealistic. But|Mihara
(1997) presented an interpretation of an infinite society based on a finite number of individuals and a

countably infinite number of uncertain states.

11.5 Proof of Lemma [d11]

‘We use notations in the definition of monotonicity.

1. (Monotonicity) Let z be an arbitrary alternative other than x and y. Assume that at a profile p”
individuals in G prefer x to y to all other alternatives, and other individuals prefer y to x to all other
alternatives. If, when the preferences of some individuals in G change from >; (their preferences at
p) to > (their preferences at p”), an alternative other than x is chosen by the social choice function,
then they can gain benefit by revealing their preferences >; when their true preferences are >;'. Thus,
the social choice function continues to choose x in this case. By the same logic, when the preferences
of all individuals in G change to their preferences at p”, the social choice function chooses x. Next,
if, when the preferences of some individuals in N \ G change from >; to >/, the social choice
function chooses y, then they can gain benefit by revealing their preferences > when their true
preferences are >;. On the other hand, if z is chosen in this case, they can gain benefit by revealing
their preferences >; when their true preferences are >'. Thus, x must be chosen. By the same logic,
when the preferences of all individuals change to their preferences at p”, the social choice function
chooses x. Choice of x by the society never violates the coalitional strategy-proofness.

Next, if, when the preferences of some individuals in G change from > to >/ (their preferences
at p’), the alternative chosen by the social choice function changes directly from x to y, then they
can gain benefit by revealing their preferences > when their true preferences are >. Thus, the
alternative chosen by the social choice function does not directly change from x to y in this case.
By the same logic, when the preferences of all individuals in G change to their preferences at p/, the
alternative chosen by the social choice function does not directly change from x to y. Further, if,

when the preferences of some individuals in N \ G change from > to >/, the alternative chosen
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by the social choice function changes directly from x to y, then they can gain benefit by revealing
their preference >; when their true preferences are >;. By the same logic, when the preferences of
all individuals change to their preferences at p’, the alternative chosen by the social choice function
does not directly change from x to y.

There is a possibility, however, that the alternative chosen by the social choice function changes from
x through w(# x, y) to y in transition from p” to p’. If, when the preferences of some individuals
change, the alternative chosen by the social choice function changes from x to w, and further when
the preferences of other some individuals (denoted by i) change, the alternative chosen by the social
choice function changes to y, they have incentives to reveal their preferences >, when their true
preferences are > because they prefer y to w at p”. Therefore, an alternative other than y is chosen
by the social choice function at p’. Choice of x or another alternative w(# x, y) by the society never

violates the coalitional strategy-proofness.

. (Weak Pareto principle) Let p be a profile at which all individuals prefer x to y, and p’ be a profile

at which x is chosen by the social choice function. Assume that at another profile p” all individuals
prefer x to y to all other alternatives. If, when the preferences of some individuals change from >/
to >7, the social choice function chooses an alternative other than x, then they can gain benefit by
revealing their preferences >; when their true preferences are >7. Thus, x is chosen in this case.
By the same logic, when the preferences of all individuals change to their preferences at p”, x is
chosen. Since at p” and at p all individuals prefer x to y, monotonicity (proved in (1)) implies that
an alternative other than y is chosen by the social choice function at p.

Choice of x or another alternative w(## x, y) by the society at p never violates the coalitional
strategy-proofness. For example, let w be an alternative other than x and y and assume that p
is a profile such that all individuals prefer w to x to y to all other alternatives, then w is chosen by

any social choice function.

11.6 Proof of Lemma[{1.2

1. Case 1: There are more than three alternatives.

Assume that G is decisive for x against y. Let z and w be given alternatives other than x and y.
Consider the following profile.

(a) Individuals in G prefer z to x to y to w to all other alternatives.

(b) Other individuals prefer y to w to z to x to all other alternatives.

By weak Pareto principle the social choice function chooses y or z. Since G is decisive for x against
v, z is chosen. Then, by monotonicity the social choice function chooses an alternative other than
w so long as the individuals in G prefer z to w. It means that G is decisive for z against w. From this
result by similar procedures we can show that G is decisive for x (or y) against w, for z against x (or
y), and for y against x. Since z and w are arbitrary, G is decisive about every pair of alternatives,

that is, it is a decisive set.

. Case 2: There are only three alternatives x, y and z.

Assume that G is decisive for x against y. Consider the following profile.
(a) Individuals in G prefer x to y to z.

(b) Other individuals prefer y to z to x.
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By weak Pareto principle the social choice function chooses x or y. Since G is decisive for x against
v, x is chosen. Then, by monotonicity the social choice function chooses an alternative other than
z so long as the individuals in G prefer x to z. It means that G is decisive for x against z. Similarly
we can show that G is decisive for z against y considering the following profile.

(a) Individuals in G prefer z to x to y.

(b) Other individuals prefer y to z to x.

By similar procedures we can show that G is decisive for y against z, for z against x, and for y

against x.

11.7 Proof of Lemma

Let x, y and z be given three alternatives, and consider the following profile.

1. Individualsin G \ (G N G’) prefer z to x to y to all other alternatives.
2. Individuals in G’ \ (G N G’) prefer y to z to x to all other alternatives.
3. Individuals in G N G’ prefer x to y to z to all other alternatives.

4. Individualsin N \ (G U G’) prefer z to y to x to all other alternatives.

Since G and G’ are decisive sets, the social choice function chooses x. Only individuals in G N G’ prefer x
to z and all other individuals prefer z to x. Thus, by monotonicity G N G’ is decisive for x against z. By

Lemmal[I1.2lit is a decisive set.
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Chapter 12

On the computability of binary social
choice rules in an infinite society and
the halting problem

This chapter investigates the computability problem of the Arrow impossibility theorem (Arrow
(1963)) of social choice theory in a society with an infinite number of individuals (infinite society)
according to the computable calculus (or computable analysis) by|/Aberth|(1980) and /Aberth!(2001)).
We will show the following results. The problem whether a transitive binary social choice rule
satisfying Pareto principle and independence of irrelevant alternatives (IIA) has a dictator or has
no dictator in an infinite society is a nonsolvable problem, that is, there exists no ideal computer
program for a transitive binary social choice rule satisfying Pareto principle and ITA that decides
whether the binary social choice rule has a dictator or has no dictator. And it is equivalent to
nonsolvability of the halting problem. A binary social choice rule is a function from profiles of
individual preferences to social preferences, and a dictator is an individual such that if he strictly
prefers an alternative to another alternative, then the society must also strictly prefer the former to
the latter®]]

12.1 Introduction

This chapter investigates the computability problem of the Arrow impossibility theorem (Arrow! (1963))
of social choice theory in a society with an infinite number of individuals (infinite society) according to the
computable calculus (or computable analysis) by|Aberth|(1980) and |Aberth! (2001). Arrow’s impossibility
theorem shows that, with a finite number of individuals, for any binary social choice rule which satisfies the
conditions of transitivity, Pareto principle and independence of irrelevant alternatives (IIA) there exists
a dictator. A dictator is an individual such that if he strictly prefers an alternative to another alternative,
then the society must also strictly prefer the former to the latter. On the other hand, [Fishburn| (1970),
Hanssonl (1976)) and [Kirman and Sondermann! (1972)) show that, in a society with an infinite number of

individuals (infinite society), there exists a transitive binary social choice rule satisfying Pareto principle

*I This chapter is based on my paper of the same title which will be published in Applied Mathematics and Com-
putation, Elsevier.
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and IIA without dictatorZ,

In the next section we present the framework of this chapter and some preliminary results. In Section
13.3 we will show the following results. The problem whether a transitive binary social choice rule sat-
isfying Pareto principle and ITA has a dictator or has no dictator in an infinite society is a nonsolvable
problem, that is, there exists no ideal computer program for a transitive binary social choice rule satisfy-
ing Pareto principle and ITA that decides whether the binary social choice rule has a dictator or has no

dictator. And it is equivalent to nonsolvability of the halting problem.

12.2 The framework and preliminary results

There are more than two (finite or infinite) alternatives and a countably infinite number of individuals.
The set of individuals is denoted by w, and the set of alternatives is denoted by A. The alternatives are
represented by x, y, z, w and so on. Individual preferences over the alternatives are transitive linear orders,
that is, they prefer one alternative to another alternative, and are not indifferent between them. Denote
individual i’s preference by >;. We denote x >; y when individual i prefers x to y. A combination
of individual preferences, which is called a profile, is denoted by p(= (>1,>2,---)), P'(= (>, >5.-*))
and so on. We assume that the profiles satisfy the free triple property. It means that about any set of
three alternatives, the profiles of individual preferences are not restricted. About a set of three alternative
(denoted by {x, y, z}) we denote the set of preferences of individual i by Ej;yz. The set of profiles about
{x,y,z}is denoted by X'¥), , where = {1,2,---} is the set of natural numbers. It represents the set of

individuals.

®
xyz

We consider a binary social choice rule about {x, y,z} f : ¥¢  — X, which determines a social
preference about {x, y, z} corresponding to each profile. X, in this formulation denotes the set of social
preferences about {x, y, z}. We denote x > y when the society strictly prefers x to y, and denote x ~ y
when the society is indifferent between them. The social preference is denoted by > at p, by >’ at p’ and
o on.

The social preferences are required to satisfy transitivity, Pareto principle and Independence of irrelevant

alternatives (114 ). The meanings of these conditions are as follows.

Transitivity About three alternatives x, yand z, x > yand y > z (orx > yand y ~ z, or x ~ y and
y > z)imply x > z,and x ~ y and y ~ z imply x ~ z.

Pareto principle When all individuals prefer x to y, the society must prefer x to y.

Independence of irrelevant alternatives (IIA) The social preference about every pair of two alternatives x
and y is determined by only individual preferences about these alternatives. Individual preferences

about other alternatives do not affect the social preference about x and y.

Arrow’s impossibility theorem shows that, with a finite number of individuals, for any binary social choice
rule which satisfies transitivity, Pareto principle and ITA there exists a dictator. In contrast [Fishburn
(1970), Hansson! (1976)) and [Kirman and Sondermann| (1972) show that when the number of individuals
in a society is infinite, there exists a transitive binary social choice rule satisfying Pareto principle and
ITA without dictator. A dictator is an individual such that if he strictly prefers an alternative to another

alternative, then the society must also strictly prefer the former to the latter.

*2 [Taylor| (2003) is a recent book that discusses social choice problems in an infinite society.
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Mideal computer Now we consider an ideal computer according to|Aberth! (2001). An ideal computer
is a machine that manipulates symbol strings, and these symbol strings may be arbitrarily long. The ideal
computer may have a finite number of registers. Initially all registers are empty of symbol strings, except
for a few registers, vy, vz, ..., Uy, this being the inputs to the ideal computer. The outputs of the ideal
computer, after it ceases computation, is the contents of another group of registers, wy, wa, ..., Wy. If
P is the program of the ideal computer, with its registers vy, va, ..., v, set to prescribed values a;, as,
..., an, respectively, then P(ay,as,...,a,) designates its outputs after computation terminates, that is,
the values that leave in wy, ws, ..., w,. Anideal computer for a social choice rule will be explained in the

next section.

Next, according to definitions in[Sen| (1979) we define the following terms.

Almost decisiveness If, when all individuals in a finite or infinite group G prefer an alternative x to an-
other alternative y, and other individuals (individuals in w \ G) prefer y to x, the society prefers x
to y (x > y), then G is almost decisive for x against y.

Decisiveness If, when all individuals in a group G prefer x to y, the society prefers x to y regardless of
the preferences of other individuals, then G is decisive for x against y.

Decisive set If a group of individuals is decisive about every pair of alternatives, it is called a decisive set.

A decisive set may consist of one individual. If an individual is decisive about every pair of alternatives
for a binary social choice rule, then he is a dictator of the binary social choice rule. Of course, there exists
at most one dictator.

First about decisiveness we can show the following lemma.

Lemma 12.1 If a group of individuals G is almost decisive for an alternative x against another alternatives

¥, then it is decisive about every pair of alternatives, that is, it is a decisive set.

Proof. See Section[12.3 O

The implications of Lemma[I2.T]are similar to those of Lemma 3*a in[Sen| (1979) and Dictator Lemma

in[Suzumural (2000). Next we show the following lemma.
Lemma 12.2 If G; and G, are decisive sets, then G; N G5 is also a decisive set.

Proof. See Section[12.6 O

Note that G; and G, cannot be disjoint. Assume that G; and G are disjoint. If individuals in G prefer
x to y, and individuals in G, prefer y to x, then neither G; nor G, can be a decisive set. This lemma
implies that the intersection of a finite number of decisive sets is also a decisive set.

These are standard results of social choice theory. But for convenience of readers we present the proofs

of these lemmas in the later sections.

12.3 Computability of social choice rules and the halting problem

Consider profiles such that about three alternatives x, y and z one individual (denoted by i) prefers x

to y to z, and all other individuals prefer z to x to y. Denote such a profile by p’, and the set of such
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profiles is denoted by Z_J)’;’, y,z+ By Pareto principle the social preference about x and y is x > y. The social
preference is x > z or z > . If the social preference is x > z at p’ for some i, then by ITA individual
i is almost decisive for x against z, and by Lemma [[2.1] he is a dictator. On the other hand if the social
preference is z > y at p’ for alli € N, then there exists no dictator. In this case by IIA, Lemma[12.1]and
[12.2]all co-finite sets (groups of individuals whose complements are finite sets) are decisive sets. Thus, we

obtain

Lemma 12.3 1. Any binary social choice rule which satisfies Pareto principle and IIA has a dictator
or has no dictator.

2. In the latter case all co-finite sets are decisive sets.

We can show, however, that for any transitive binary social choice rule satisfying Pareto principle and
ITA, the problem whether it has a dictator or has no dictator is a nonsolvable problem, that is, there exists
no ideal computer program for a transitive binary social choice rule satisfying Pareto principle and I1A

that decides whether it has a dictator or has no dictator.

MIdeal computer for binary social choice rules We consider a program P of an ideal computer for such
a transitive binary social choice rule restricted to profiles in Z_’;", y.z- Theinput 7 of P isastring of individual
preferences (>1, >, - - - ). Possible preferences of each individual about x, y and z and also possible social
preferences about x, y and z are, respectively, appropriately enumerated. The ideal computer reads the
preference of each individual at the profile p’, i = 1,2, ..., step by step from the preference of individual
1 at p!, and registers them in sequence in the register v;. It decides the social preference at p', i =
1,2,...,after reading preferences of the first some individuals including individual i, that is, it decides the
social preference at p! after reading preferences of individuals including individual 1, decides the social
preference at p? after reading preferences of individuals including individual 2, and so on. And it registers
the social preference at each profile in sequence in the register v;.

If the social preference at p! is x > z, then the ideal computer finds that individual 1 is a dictator, writes
“1” in the register w; whose value is its output, and it terminates; on the other hand if the social preference
at p! is z > y, then the ideal computer does not find a dictator and it continues to read the preference of
individual 1 at p? in the next step. If the social preference at p? is x > z, then it finds that individual 2 is a
dictator, writes “2” in wy, and it terminates; on the other hand if the social preference at p? is z > y, then
it does not find a dictator and it continues to read the preference of individual 1 at p? in the next step, and
so on. If the binary social choice rule has a dictator, the ideal computer eventually finds a dictator and
terminates. On the other hand if the binary social choice rule does not have a dictator, the ideal computer
can not find a dictator and it continues computation forever.

We show the following theorem which is the main result of this chapter.

Theorem 12.1 1. For any transitive binary social choice rule satisfying Pareto principle and ITA the
problem whether the binary social choice rule has a dictator or has no dictator is a nonsolvable
problem, that is, there exists no ideal computer program for any transitive binary social choice rule
satisfying Pareto principle and ITA that decides whether it has a dictator or has no dictator.

2. The above result is equivalent to nonsolvability of the halting problem.

*3Ifx ~z (orz > x)and y ~ z (or y > z), transitivity implies x ~ y (or y > x). It is a contradiction.
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Proof. 1. We assume that there is an ideal computer program P* which solves the problem whether
the ideal computer program P for a transitive binary social choice rule finds a dictator or not, that
is, it terminates or not. The inputs to the program P* are a program P in its register v; and a string
of individual preferences I, which is the input to P, in v,. P™* analyzes the program P with the
input 7/, and supplies in w; a single output integer having two values, 1 to indicate that P finds a
dictator, and 0 to indicate that P does not find a dictator. The 0-1 output of P* is a function of P
and I, and then we denote P*(P, I).

Next we define a program P’(I) such that P*(P’, I') is wrong. First, we construct another program

Pg, whose inputs are two programs P*, P and an integer K. In this formulation K denotes the

maximum number of profiles P has read. Thus, we assume that P reads individual preferences

until it decides the social preferences at p', i = 1,2,..., K, or P* terminates before then. The
program Ps(P*, P(I), K) follows the actions of P*(P, I) step by step. Then, Ps supplies three
output integers. The first output integer is 0 if P*(P, 1) does not terminate after P decides the
social preference at pX, and is 1 if P*(P, I') terminates just when P decides the social preference at
pX or before then. If the first output integer is 1, the remaining two output integers are significant,
one giving the exact number of K, denoted by K*, taken by P*(P, I) to termination, and the other

giving the P*(P, I') output integer, 1 or 0, left in wy (of P*).

The program P’(I) employs Ps as a subroutine and behaves as follows.

(a) If Pg signals termination of P*(P’,I) with the output 1 in w; (existence of dictator), then
P'(I) gives the result that the social preference about y and zisz > y atp’, i = 1,2,....

(b) If Pg signals termination of P*(P’, I') with the output 0 in w; (non-existence of dictator), then
P’(I) gives the result that the social preference about x and z is x > z at pX .

(c) If Pg signals nontermination of P*(P’,I) after P decides the social preference at pX, then
P’(I) gives the result that the social preference about y and zis z > y atp’, i = 1,2,..., K.

Thus the binary social choice rule has a dictator or has no dictator, depending on whether P*

claims that it has no dictator or has a dictator, respectively. Whatever result P* determines for P’,

the program P* is wrong. And if P* never terminate, it is still wrong because it fails to give a valid

result that the transitive binary social choice rule has no dictatord.
2. According to|Aberth|(2001)) the halting problem is stated as follows.

The halting problem Let P be any program that receives its input / in a single register vy, and P*
be a program with its inputs P in a register vy and / in v,, and supplies in w; a single output
integer, 1 to indicate termination for P and 0 to indicate nontermination for P. The halting
problem is: Is there a program P* that can determine whether P with that input will terminate
or not terminate?

From the arguments before this theorem and the proof of (1) of this theorem it is clear that non-

solvability of the problem whether any transitive binary social choice rule satisfying Pareto principle

and ITA has a dictator or has no dictator is equivalent to nonsolvability of the halting problem.
O

Note: x > z and z > y are not consistent at p’ for eachi Consider the following profile.

*4 This proof is based on the proof of nonsolvability of the problem to decide whether any real number equals
zero or not in|Aberth/(2001).
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1. Individuali:y >; x >; z

2. Other individuals (denoted by j): z >; y >; x

Assume x > z and z > y at p’ for some i. By IIA the social preference is x > z and z > y. Then,
by transitivity the social preference about x and y must be x > y. But by Pareto principle the social

preference must be y > x. Therefore, x > z and z > y are not consistent at p’ for each i.

12.4 Final Remark

We have examined the Arrow impossibility theorem of social choice theory in an infinite society. The
assumption of an infinite society seems to be unrealistic. But/Miharal (1997) presented an interpretation
of an infinite society based on a finite number of individuals and a countably infinite number of uncertain

states.

12.5 Proof of Lemma[i2.1]

Consider the following profile.

1. Individuals in G (denoted by i): x >; y >; z.
2. Other individuals (denoted by j): y >; z, ¥ >; x, and their preferences about x and z are not

specified.

By Pareto principle the social preference is y > z. Since G is almost decisive for x against y, the social
preference is x > y. Then, by transitivity the social preference should be x > z. This means that G is
decisive for x against z. Similarly we can show that G is decisive for z against y considering the following

profile.

1. Individuals in G (denoted by i): z >; x >; y.
2. Other individuals (denoted by j): z >; x, y >; x, and their preferences about y and z are not

specified.

By similar procedures we can show that G is decisive for y against z, for z against x, for y against x, and
for x against y.

Interchanging z with another alternative w # x, y, z, we can show that G is decisive about {x, y, w}.
Similarly we can show that G is decisive about {x, v, w}, is decisive about {u, v, w}. u, v and w are arbitrary.

Therefore, G is decisive about every pair of alternatives.

12.6 Proof of Lemma[12.2]

Consider the following profile about x, y and z.

1. Individuals in G; \ G5 (denoted by i): z >; x >; y
2. Individuals in G, \ G (denoted by j): y >; z >; x
3. Individuals in G; N G, (denoted by k): x > y >¢ z
4. Other individuals (denoted by I): z >; y >; x
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Since G and G, are decisive sets, the social preference is x > y and y > z. Then, by transitivity the
social preference about x and z should be x > z. Only individuals in G; N G, prefer x to z, and all other
individuals prefer z to x. Thus, G; N G, is almost decisive for x against z. Then, by Lemma [I2T]it is a

decisive set.
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Chapter 13

Undecidability of Uzawa equivalence
theorem and LLPO (Lesser limited
principle of omniscience)

The Uzawa equivalence theorem (Uzawal(1962)) showed (classically) that the existence of Walrasian
equilibrium in an economy with continuous excess demand functions is equivalent to Brouwer’s
fixed point theorem, that is, the existence of a fixed point for any continuous function from an n-
dimensional simplex to itself. We examine the Uzawa equivalence theorem from the point of view
of constructive mathematics, and show that this theorem, properly speaking, the assumption of the
existence of a Walrasian equilibrium price vector in this theorem, implies LLPO (Lesser limited

principle of omniscience), and so it is non-constructivel,

13.1 Introduction

The existence of Walrasian equilibrium in an economy with continuous excess demand functions is
proved by Brouwer’s fixed point theorem. It is widely recognized that Brouwer’s fixed point theorem is
not a constructively provable theorem. The so-called Uzawa equivalence theorem (Uzawal(1962))) showed
(classically) that the existence of a Walrasian equilibrium price vector is equivalent to Brouwer’s fixed point
theorem, that is, the existence of a fixed point for any continuous function from an n-dimensional simplex
to itself. However, is this theorem constructively proved? In [Velupillai (2006) he said that the Uzawa
equivalence theorem implies decidability of the halting problem of the Turing machine. In this chapter we
examine the Uzawa equivalence theorem from the point of view of constructive mathematics, and show that
this theorem, properly speaking, the assumption of the existence of a Walrasian equilibrium price vector
in this theorem, implies LLPO (Lesser limited principle of omniscience), and so it is non-constructive.

The omniscience principles are general statements that can be proved classically but not constructively,
and are used to show that other statements do not admit constructive proof$*2. This is done by showing

that the statement implies an omniscience principle. The strongest omniscience principle is the law of

*I This chapter is based on my paper of the same title which will be published in Applied Mathematics and Com-
putation, Elsevier.

*2 About omniscience principles we refer to[Bridges and Richman| (1987), [Bridges and Vital (2006), Mandelkern
(1983) and Mandelkern! (1989), .
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excluded middle. A weaker one is the following limited principle of omniscience (abbreviated as LPO).

Limited principle of omniscience (LPO) Given a binary sequence (a,) = an,n € N(the set of positive integers),

then either a,, = 0 for all n or a,, = 1 for some n.
Another omniscience principle is the following LLPO. It is weaker than LPO.

Lesser limited principle of omniscience (LLPO) Given a binary sequence (a,) with at most one 1, then

either a, = 0 for all even n, or else a,, = 0 for all odd n.

In the next section we present the theorem of the existence of Walrasian equilibrium and the Uzawa
equivalence theorem with their classical proofs. In Section 14.3 we present some results of constructive
mathematics, and prove that the assumption of the existence of Walrasian equilibrium in the Uzawa equiv-

alence theorem implies LLPO.

13.2 Existence of Walrasian equilibrium and the Uzawa equivalence
theorem

First we present the theorem of the existence of Walrasian equilibrium in an economy with continuous
excess demand functions for the goods and its classical proof. Let A be an n-dimensional simplex (n > 2),
and p = (po, p1,-++ , pn) be a point on A. p; > 0 foreachi and ) ;_, p; = 1. The prices of at least two
goods are not zero. Thus, p; # 1 for all i. Then, the theorem of the existence of Walrasian equilibrium is

stated as follows.

Theorem 13.1 (Existence of Walrasian equilibrium) Consider an economy with n 4+ 1 goods Xy, X1, ---,
X, with a price vector p = (po, p1,--, Pn). Assume that an excess demand function for each good

fi(po, p1,-++ . pn), i =0,1,--- ,n,is continuous and satisfies the following condition,
pofo+ p1fi + -+ pnfu = 0 (the Walras Law).

Then, there exists an equilibrium price vector (pg, py,--- , py) which satisfies

Ji(po,p1,-++,pn) <O0foralli i =0,1,---,n). And when p; > 0 we have f;(pg.p3.---.,p;) =0.

Classical proof. See Section[[3.3 O

Next we present the Uzawa equivalence theorem (Uzawal (1962)) which states that the existence of Wal-
rasian equilibrium is equivalent to Brouwer’s fixed point theorem, that is, the existence of a fixed point for

any continuous function from an n-dimensional simplex to itself, and its classical proof.

Theorem 13.2 (Uzawa equivalence theorem) The existence of Walrasian equilibrium is equivalent to

Brouwer’s fixed point theorem.

Classical proof. We will show the converse of the previous theorem. Let ¥ = {v¢, ¥1,...,¥s} be an

arbitrary continuous function from A to A, and construct excess demand functions by
zi(p) = ¥i(p) — pin(p), i =0.1,....n, 13.1)

where p = {po, p1,--., Pn}, and u(p) is defined as follows,

_ iz Pivilp)
) Z?:o Pi2 .
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z; fori =0,1,...,n are continuous, and as we will show below, they satisfy the Walras Law. Let multiply

pi to each z; in (I3.1), and summing up them from 0 to n, we obtain

Y opizi=Y_ pivi(p) —uw(p) Y p?=>_ pivi(p)— w > or?
i=0 i=0 i=0 i=0 2i=o0 Pi i=0

n n
=Y pivi(p) =) pivi(p) = 0.
i=0 i=0
Thus, z; for all i satisfy the conditions of excess demand functions, and by Theorem [I3.1] there exists an

equilibrium price vector. Let p* = {p§, p}...., p;} be an equilibrium price vector. Then we have
vi(p*) < u(p™)pi (13.2)

and if p # 0, ¥; (p*) = u(p*)p;. But since ¥;(p*) must be non-negative by its definition (a function
from A to A), we have ¥;(p*) = 0 when p* = 0. Therefore, for all i we obtain ¥;(p*) = u(p*)p;.

Summing up them from i = 0 to n, we get

n n
D v (™) =u(p) Y pr-
i=0 i=0
Because Y /_ ¥ (p*) = L and }77_, pf = 1, we have 11(p*) = 1, and so we obtain
vi(p*) =p;. i =0.1,....n.

p* is a fixed point of . We have shown that any continuous function from A to A must have a fixed

point. O

13.3 Uzawa equivalence theorem and LLPO
13.3.1 Basics of constructive mathematics

About major methods and principal results of constructive mathematics we refer to|Bridges and Rich-
man (1987), Bridges and Vita (2006), Mandelkern| (1983)) and [Mandelkern! (1989). A real number is rep-
resented as rational approximations, and is identified with a sequence x = (x,) of rational numbers that
is regular in the sense that 1 ]

|Xm — Xn| = — + =
m n

for all positive integers m and n. Two real numbers x and y are equal if |x, — y,| < % for all positive

integer n. Some operations on R (the set of real numbers) are defined as follows:

L. (x £ ¥)n = x2n £ you,
2. |x|n = |xnl

where (x &+ y), denotes the n-th term of the real number x + y (or x — y), and |x| = max(x, —x). A real
number x = (x,) is positive (x > 0) if there exists n such that x,, > %, and it is nonnegative (x > 0) if
Xp > —% for all n. x is negative (x < 0) if —x is positive, that is, there exists n such that —x,, > %, then
Xp < —=. Similarly, x is nonpositive (x < 0) if —x is nonnegative, that is, —x, > —1 for all n, then x,, < 1
for all n. For two real numbers x and y we define x > y to mean x — y > 0. We obtain the following

properties of positive real numbers.
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l. Ifx>0and y > 0, then x + y > 0.

It is clear.

2. Ifx+y>0,thenx >0o0ry > 0.

1

If x + y > 0, there is a positive integer n such that x, + y2, > % =5, + ﬁ Then, we have

1 1 :
Xon > 5, OF Yap > 5. Thismeans x > 0 or y > 0.

If x — y > 0, for any real number z we have (x —z) + (z —y) > 0. Then,x —z >0orz —y > 0.

We need the following results.

Lemma 13.1 1. For any real number x there exists a binary sequence (a,) such that

Proof:

(a) x <0ifand onlyif a, = 0 for all n.
(b) x > 0ifand only if a, = 1 for some n.
Conversely, for any binary sequence (a,) there exists a real number satisfying these two conditions.

Therefore, for a real number x the property that x < 0 or x > 0 is equivalent to LPO.

. For any real number x there exists a binary sequence (a,) with at most one 1 such that

(a) x > 0ifand only if a, = 0 for all even n.

(b) x < 0ifand only if a, = 0 for all odd n.

Conversely, for any binary sequence (a,) with at most one 1 there exists a real number satisfying
these two conditions. Therefore, for a real number x the property that x < 0 or x > 0 is equivalent
to LLPO.

1. For each positive integer n we have x < % or x > 0. Definea, = 0ifx < % and a, = 1
if x > 0. This defines a binary sequence (a,). If a,, = 0 for all n, we have x < % for all n, and it
follows that x < 0. If x < 0 we have a,, = 0 for all n. On the other hand, if @, = 1 for some n, we
have x > 0. If x > 0, there exists an integer n such that x > %, and then we must have a, = 1 for
some 7.

Conversely, given a binary sequence (a,), define

n=1

R

It is clear that x < 0if and only if @, = 0 for all n since if a,, = 1 for some n, x > 2% And we have
x > 0if and only if @, = 1 for some n since if a,, = 0 for all n, we have x = 0. Thus, x satisfies two

conditions in (1).

. From (1) of this lemma we can construct a binary sequence (b,) such that [x| < 0 if and only if

b, = 0 for all n, and |x| > 0 if and only if b, = 1 for some n. Construct a binary sequence (a,) as
follows. When by = 0, define a; = 0. When b; = 1, we have |x| > 0, and either x > 0 or x < 0. If
x > 0,definea; = landa, =0foralln > 2. If x <0, definea; =0, a, = 1 and a, = 0 for all
n > 3. Assume b; = 0. When b, = 0, define a, = 0. When b, = 1, we have either x > 0 or x < 0.
If x > 0,definea, =0,a3 = 1landa, =O0foralln > 4. If x <0, define a, = 1 and a,, = O for all
n > 3. We proceed inductively. If a, = 0 for all even n, |[x| < 0 or x > 0, and if ¢, = 0 for all odd
n,|x| <0orx <0.If|x| <0,a, =0foralln. If x >0, a, = 1 for some odd n and a,, = 0 for all

even n, and if x < 0, a, = 1 for some even n and a,, = 0 for all odd n.
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Conversely, given a binary sequence (a,) with at most one 1, define

o0 _

(=D)""ay,

X = Z on :
n=1

Then, it is clear that x > 0 if and only if a,, = 0 for all even n since if a, = 1 for some even n,

X = _an_ Similarly we have x < 0 if and only if a,, = 0 for all odd » since if a, = 1 for some odd
n,x = 2% Thus, x satisfies two conditions in (2).
O
13.3.2 Uzawa equivalence theorem and LLPO
For all i other than 0 v; is assumed to be defined as follows
o Aip)
Vi = ST (o)
Z_/’:O i (Pj)
And for i = 0 we assume
_ Ao(po)
Vo=sw o5
Zj:o i (pj)
Then we have 5 .
Ai(pi) j=0PjAj (D) .
zi(p) = — pi Jforalli #0,
l Yio i) Yo P o0 A (p))
and "
20(p) = Ao(po) 0 > =0 PiAj(p))
Y=o ki) Yo7 Y=o i (p))
If z; = 0 for all i including i = 0, then we obtain
poAi(pi) = piro(po).foralli # 0. (13.3)
Now specifically we assume
Ai(pi) =pi+ 1,0 #0, (13.4)
and
720+ 1+ b, when pg < §
Ao(po) = | 7% + po + b, when 1<pPo<3% (13.5)
%—i—%—i—b, when 1 < pg <1
where b is a real number such that b > —1. From (I3.3) and (I3.4) we have
Pi(2o(po) — po) = po, i # 0. (13.6)
This implies that all p;, i # 0, are equal. Since Y_7_, p; = np; + po = 1 we have
1—
pi= 10 (13.7)
n

If po = 0, we have p; = + foralli % 0. But, then since Ao(po) = 3 + b > 0 it contradicts (I3.6). Thus

po # 0. From (I3.6) and (13.7)
(1= po)(Ao(po) — po) = npo. (13.8)
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Therefore, from (I3.3) and (I3.8) we obtain

po—%—bzo, when pgy <
b =0, when § < po < 3 (13.9)
po—%—bzo, when pgy >

Bl=

N[—=

These are the equilibrium conditions. The assumption of the existence of Walrasian equilibrium implies
the existence of pg in (0, 1) such that one of these conditions is satisfied. Which of the conditions is satisfied
depends on the value of b.

Now we show the following main result of this chapter.

Lemma 13.2 The existence of an equilibrium price vector assumed in the Uzawa equivalence theorem
implies LLPO.

Proof. Let p§ be an equilibrium value of po. If b < 0, we have p§ < 1. Ifb = 0, pg isany valuein [, 3].
On the other hand, if b > 0, we have pj > % About three real numbers pj, i and % we have pgj > 4—1‘ or
P < % If pg > 41'1’ then b must satisfy b > 0. And if pj < %, then b must satisfy b < 0. Therefore, in
order to determine an equilibrium price p; we must know whether b > 0 or b < 0. As proved in (2) of

Lemma 2lit implies LLPO. O

13.4 Final remark

The Uzawa equivalence theorem in general equilibrium theory demonstrates that the existence of Wal-
rasian equilibrium in an economy with continuous excess demand functions is equivalent to Brouwer’s
fixed point theorem. We have shown that the existence of equilibrium price vector assumed in the
Uzawa equivalence theorem implies LLPO (Lesser limited principle of omniscience). Therefore, it is

non-constructive.

13.5 Proof of Theorem [13.1]

Let v; be a function from p = (pg, p1,-+* , pn) tov = (v, v1,--+ , vy,) as follows,
v; = pi + fi, when f; >0,

v; = pi, when f; <0.

We construct a function ¢ = (¢g, @1, ,@,) from A to A as follows.

1

. , AR = V.
@i (Po. 1 Pn) Vo + v+t

Since we have ¢; >0, i =0,1,---,n, and

Qo+ @1+t =1,

(¢0, @1, ,@n) s a point on A.
Since each f; is continuous, each ¢; is also continuous. Thus, by Brouwer’s fixed point theorem there

exists p* = (pg, py.--- . py) that satisfies

(Po(pg. PYs++ Py 01Dy P+ Pp)s - 0n(PG, P+ Pp)) = (D5 DT+ 2 Dyy)-
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Since v; > p; for all i, we have v; (pg, pY,---, p;) = Ap/ for all i for some A > 1. We will show A = 1.
Now assume A > 1. Then, if p* > 0 we have v; (pg. py.--- . py) > p}, thatis, fi(pg. p7. -+, py) > 0.0n
the other hand, since for all i p/ > 0 and the sum of them is one, at least one of them is positive. Then,

we have pg fo + pi fi + -+ p; fu > 0. It contradicts the Walras Law. Therefore, we get 1 = 1. And we
obtain v = pg, v1 = py, -+, vu = p,yand fi(pg, py.--- . py) <O0foralli. O
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