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Abstract

Why do modern organizations have middle managers? We address this question by
analyzing the following hierarchical communication model. A subordinate has private
information regarding the profitability of a new project and sends a costly signal about
it (e.g., technical reports). Although the boss has to decide whether to approve the new
project, she cannot freely observe the signal. Instead, the boss has two channels to learn
it: (i) indirect communication with the biased (middle) manager who directly observes
the signal, and (ii) direct observation of the signal by conducting costly investigations.
We show that commitments to the investigation (i.e., organizations without managers)
are always suboptimal for the boss even if the investigation cost is sufficiently small and
the manager is sufficiently biased, providing a rationale for hierarchical organizations.
By decomposing the gain from having managers, we clarify that indirect communication
and costly investigation are complements if and only if the manager’s bias is sufficiently
large. Furthermore, we characterize the optimal direction of the manager’s bias for the
boss.
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1 Introduction

Modern organizations, especially large ones, have hierarchical structures with many middle

managers who are neither at the top of organizations nor front-line workers.1 Middle man-

agers are broadly considered villains that make organizations inefficient, along with their

ubiquitousness. For example, conventional wisdom has an impression that “[m]iddle man-

agers are empire builders who do little useful work for their organizations” and “[t]he work

of middle management has been de-skilled by restructuring” (Osterman, 2008). Consistent

with this perspective, middle managers tend to be dismissed upon organizational restructur-

ing. Rajan and Wulf (2006) and Wulf (2012), for instance, report a trend from the late 1980s

that organizations have become flatter and CEOs have had more span of control. Specifically,

CEOs eliminate COO positions, whereas they increase the number of functional managers

(e.g., CFO, CHRO, and CIO) who directly communicate with them.2 Furthermore, the

trend of dismissing middle managers is accelerated by advancing information technologies.3

Although flat/downsized organizations are positively perceived, delayering of hierarchi-

cal structures never promises success. The disadvantage of downsizing is highlighted in the

management literature. For example, Cascio (1993) reports that, although downsizing was

expected to reduce people costs and make organizations less bureaucratic, more than half

of the conducted companies did not materialize those benefits because downsizing made or-

1According to the U.S. Bureau of Labor Statistics survey, there were 2, 347, 420 general and operations
managers in May 2020, which was about 1.6% of the total U.S. employment.

2Wulf (2012) reports that the number of firms with COOs had decreased by about 20% from 1986 to
1998, and this trend had continued through 2011. Furthermore, Guadalupe et al. (2014) report that CEOs’
span of control in U.S. firms increased from about 5 over the 1986 - 1990 period to almost 10 in 2006.

3Pinsonneault and Kraemer (1993) demonstrate that middle managers are substituted with IT when
organizations are highly centralized. Furthermore, Bloom et al. (2014) show that decline in information-
processing costs makes organizations flatter.
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ganizational communication dysfunctional.4 Specifically, as top managers had to manage

unfamiliar tasks to fill the void, they bear large information-processing costs. Consequently,

“vital information may not be available to help the chief executive and other top managers

make decisions that only they can take” (Cascio, 1993). As another example, Google ex-

perimented with “a completely flat organization, eliminating engineering managers in an

effort to break down barriers to rapid idea development” in the early 2000s (Garvin, 2013).

However, the experiment failed within a few months. According to Gavin (2013), many

employees “went directly [Larry] Page with questions about expense reports, interpersonal

conflicts, and other nitty-gritty issues,” which was one reason for the failure. These examples

demonstrate that the cost of information processing is a bottleneck and makes flat organi-

zations dysfunctional. Further, middle managers seem more helpful in reasonably providing

information to the boss than conventional wisdom images.

We propose a model that explains such dysfunctional flat organizations, and demonstrate

the benefits of middle managers, referred to as value of middle managers. Specifically, we

consider a hierarchical communication model with three parties: a principal, a (middle) man-

ager, and an agent.5 The principal decides whether to implement a new project depending on

the state. As an agent with strong bias toward a new project has private information regard-

ing the state, the principal attempts to obtain it through the following two channels. The first

channel is “costly direct communication.” Here, the agent sends a costly signal regarding the

state and the principal directly observes it by paying investigation/information-processing

costs. The second channel is “costless indirect communication.” Here, the manager who

4Specifically, according to a 1991 survey conducted by Wyatt Company of 1005 firms, downsizing induced
that (i) 46% of the companies could reduce expenses, and (ii) 21% of the companies were satisfactory on
improvements in shareholders’ return on investments (Cascio, 1983).

5Throughout the paper, we treat the manager and the agent as male and the principal as female.
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directly observes the agent’s signal sends a cheap-talk message (e.g., endorsement of a new

project) to the principal. The principal observes the manager’s message without paying any

costs. Notice that direct (resp. indirect) communication channel is associated with flat (resp.

hierarchical) organizations. We emphasize the value of middle managers in the investigation

of this model.

By characterizing the principal-optimal equilibrium for each investigation cost and the

manager’s bias, we show that commitments to direct communication are never optimal.

Importantly, the suboptimality of direct communication is true despite the sufficiently small

investigation cost and sufficiently large conflict between the principal and the manager.

Although direct communication seems optimal in such a scenario, our result indicates that

having the manager and trusting some message without investigation, referred to as message-

contingent investigation, is more beneficial. That is, because the possibility of investigation

enhances credible information transmission, the principal can save a part of the investigation

cost. This implication confirms the value of middle managers.

Owing to the full characterization of the optimal equilibrium, we can further investigate

the value of middle managers by clearly decomposing it. Specifically, it is decomposed into

information value and cost-saving values. These values are the benefits of learning infor-

mation via cheap talk and saving the investigation cost by conducting a message-contingent

investigation, respectively. We then show that, if the manager’s bias is small, then indirect

communication and costly investigation are substitutes because gains from the communica-

tion with the manager are replaceable with those from the costly investigation. Conversely,

if bias is large, then they are complements because gains from the communication cannot be

replaced with that of the costly investigation only. These values under large bias are materi-

4



alized only if the principal has the option of the investigation. Therefore, the value of middle

managers mainly relies on the information (resp. cost-saving) value when the manager’s bias

is small (resp. large).

Furthermore, our decomposition uncovers the effects of bias direction. When the bias

magnitude is small, the anti-change-biased manager is better than the pro-change-biased one

because the former enhances the information value by facilitating information transmission

from the agent as a “tough gatekeeper.” Conversely, when the bias magnitude is large, bias

toward an ex ante suboptimal project is better than that toward an ex ante optimal project.

That is, as the manager who is biased toward the ex ante suboptimal project has stronger

incentives to transmit credible information to change the principal’s initial perspective, the

principal can further save from the costly investigation more, enhancing the cost-saving

value.

The remainder of this paper is organized as follows. The following subsection briefly

reviews the related literature. Section 2 defines and discusses the formal model. Given

the analysis of the three benchmarks in Section 3, Section 4 characterizes the principal-

optimal equilibrium, and Section 5 investigates the value of the middle manager through its

decomposition. Section 6 concludes the paper.

1.1 Related literature

This paper belongs to the strands of organizational economics and political science that ra-

tionalizes hierarchical organizations from the perspective of information transmission.6 Fol-

6The literature on organizational economics regarding hierarchies has other strands, for example, focusing
on (i) efficient resource/task allocation within organizations (Garicano, 2000), (ii) physical constraints and
bounded rationality of the top (Radner, 1993), and (iii) collusion with supervisors (Tirole, 1986). See, for
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lowing Dessein (2002), several papers, such as Boehmke et al. (2006), Ambrus et al. (2013b),

Yang and Zhang (2019), Chakraborty et al. (2020), Celik et al. (2021), and Murtazashvili

and Palida (2022) point out that (a broad sense of) intermediaries facilitate communication

because they mitigate conflicts between informed players and an uninformed decision-maker.

Mitusch and Strausz (2005) regard intermediaries as devices adding noise into communica-

tion, disciplining informed players’ manipulation incentives.7 Recently, Migrow (2021) shows

that intermediaries as information aggregators facilitate information transmission. In these

papers, intermediaries work as commitment devices for the uninformed decision-maker not

to abuse obtained information.8 In contrast, we shed light on the relationship between com-

munication and investigation as a key mechanism justifying hierarchical organizations in

terms of information transmission.

Unlike our conclusion on middle managers under costly investigation, the disadvantage

of hierarchical communication with the uninformed decision-maker, who could obtain ad-

ditional information, tends to be featured in skip-level communication and whistleblowing.

Prendergast (2003) and Friebel and Raith (2004) demonstrate that skip-level communica-

tion might harm the decision-maker because it may aggravate intermediaries’ moral hazard

problem. Similarly, Ting (2008) argues that whistleblowing may make the decision-maker

worse off by discouraging employees’ effort investment. While these papers assume that

the decision-maker is passive in obtaining additional information, she voluntarily chooses

whether to obtain it in our setup, which is relevant to our positive result.9

instance, Garicano and Van Zandt (2013) and Mookherjee (2013) as overviews of each area.
7See also Goltsman et al. (2009) and Ivanov (2010).
8Intermediaries can also work as commitment devices for (i) encouraging ex ante investments (Rotem-

berg and Saloner, 2000; Nayeem, 2014, 2017) and (ii) increasing the decision-maker’s “bargaining power”
(Gailmard and Patty, 2013; Hirsch and Shotts, 2018).

9Kofman and Lawarree (1993) and Wang (2020) also demonstrate that external auditing and skip-level
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This paper is also related to the literature on strategic communication. Li (2007), Li

(2010a), and Ambrus et al. (2013a) investigate sequential or hierarchical communication

games, wherein an intermediate sender only observes a message from his immediate predeces-

sor, which are associated with our indirect communication mode.10 Similarly, strategic com-

munication with the receiver’s information acquisition is investigated by Rantakari (2016),

Le Quement (2016), Balbuzanov (2019), Miyahara and Sadakane (2020), and Sadakane and

Tam (2022).11 Our setup on the investigation is most closely related to that of Bijkerk et

al. (2018), considering the scenario where the sender partially bears the receiver’s investi-

gation cost. This paper is different from existing literature by combining these two strands.

Specifically, although the mechanism behind the complementarity between communication

and investigation is shared with these papers, the comprehensive relationship between com-

munication and investigation based on the intermediary’s bias is newly derived owing to the

hierarchical communication structure. Furthermore, our characterization provides several

novel insights on the value of middle managers.

2 The Model

2.1 Setup

An organization has three parties, namely, a principal, a manager, and an agent, and they

engage in the following hierarchical communication. The agent proposes a new project that

communication may benefit the decision-maker if she can commit to monetary incentives or decision rules.
10The literature also examines the scenarios wherein (i) senders share the same private information (Kr-

ishna and Morgan, 2001) and (ii) senders’ private information is imperfectly correlated (Austen-Smith, 1993;
Li, 2010b and 2012).

11See also Argenziano et al. (2016) for information acquisition by the sender and Levkun (2022) for
information acquisition by a fact-checker.
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he wants to be approved by the principal. The quality of the new project is represented by

θ ∈ Θ := [0, 1], which is the agent’s private information. We assume that the parties share a

common prior such that quality θ follows a uniform distribution over Θ. Given quality θ, the

agent reports it to the manager by sending costly signal s ∈ S := R+. Specifically, the cost

is increasing in signal s but decreasing in quality θ, which is given by C(θ, s) := s/(1 + θ).12

The manager freely observes signal s. After receiving signal s, the manager provides an

opinion regarding the new project for the principal. Specifically, the manager sends a cheap-

talk message m ∈M := {mE,mO}, where mE and mO mean that the manager endorses and

opposes the new project, respectively.

The principal decides whether to approve the new project or reject it and continue the

status quo project, following her investigation of the agent’s reports. Specifically, in response

to message m from the manager, the principal chooses action r ∈ R := {rI , rN}, where rI

and rN denote that she conducts an investigation and does not, respectively. If the principal

chooses r = rI , then she also observes the agent’s signal s by paying investigation cost d > 0.

Hence, her project choice depends on signal s and message m. If the principal chooses

r = rN , then she does not observe signal s and pays nothing. This implies that the project

choice solely depends on message m. Given observation o ∈ O :=M × (S ∪{∅}) determined

by action r, the principal chooses action y ∈ Y := {yA, yR}, where yA and yR denote that the

principal approves the new project and rejects it (and continues the status quo), respectively.

The parties’ preferences are defined as follows. The agent prefers for the principal to

approve the new project irrelevant to its quality. Formally, u : Θ × S × Y → R represents

12Although we have the qualitatively same results without the cost function specification, we adopt it for
deriving a clear characterization of the D1 equilibria. The specification does not explicitly appear in the
subsequent analysis, except for the proofs in the appendixes.
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the agent’s utility function defined by

u(θ, s, y) := 1l(y = yA)− C(θ, s), (1)

where 1l represents an indicator function. The principal intends to select a better project.

Specifically, the principal’s utility function v : Θ×R× Y → R is defined by

v(θ, r, y) := 1l(y = yA)θ + 1l(y = yR)θSQ − 1l(r = rI)d, (2)

where θSQ ∈ Θ represents the quality of the status quo project. We assume that θSQ is

common knowledge, and θSQ ̸= E[θ] = 1/2. The manager’s utility function w : Θ×R×Y →

R is defined by

w(θ, r, s) := 1l(y = yA)(θ + b) + 1l(y = yR)θSQ − 1l(r = rI)π. (3)

The manager has a similar preference to that of the principal, except for the following

aspects. First, the manager has positive/negative bias toward the new project represented

by b ̸= 0. Positive (resp. negative) bias implies that the manager is biased toward changing

(resp. continuing) the status quo. Hereafter, positive and negative biases are referred to

as pro-change and anti-change biases, respectively. Second, if the principal investigates the

signal, then the manager bears loss π > 0, as discussed below.

The timing of the game is summarized as follows:

1. Nature chooses quality θ following the common prior, and the agent directly observes
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it.

2. Given quality θ, the agent sends signal s ∈ S to the manager.

3. Given signal s, the manager sends cheap-talk message m ∈M to the principal.

4. Given message m, the principal chooses action r ∈ R, determining observation o ∈ O.

5. Given observation o, the principal chooses action y ∈ Y .

We adopt the perfect Bayesian equilibrium (PBE) satisfying the D1 criterion (Cho and

Kreps, 1987) as our solution concept.13 Intuitively, the D1 criterion requires that a type is

eliminated from the support of the posterior if he is less likely to deviate than the other type.

Then, in our environment, it implies that the manager/principal believes that the deviant

type is either the discontinuous point of the agent’s strategy or θ = 1 for certain.14 For

example, if the agent’s equilibrium strategy is given as the bold line in Figure 1, then the D1

criterion claims that (i) for any signal s ∈ (0, s′), the manager and principal believe that the

state is θ = θ′ for certain, and (ii) for any signal s > s′, they believe that the state is θ = 1

for certain. Owing to the implication of the D1 criterion, we can drastically simplify the

analysis of hierarchical communication and then obtain a clear characterization. For easy

reference, a PBE that satisfies the D1 criterion is hereafter referred to as the D1 equilibrium.

We say that an equilibrium is optimal if it maximizes the principal’s ex ante expected utility

among the D1 equilibria.15

13The formal definition of strategies, beliefs, PBE, and the D1 criterion is found in Appendix A.
14See Lemma 1 in Appendix A for the formal statement.
15Due to our hierarchical communication structure, the D1 criterion cannot uniquely select an informative

outcome. For example, there always exist uninformative D1 equilibria (Lemma 2). To obtain a unique
prediction, we impose this optimality.
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Figure 1: Implication of the D1 criterion

2.2 Discussion of the setup

2.2.1 Interpretation of the signals and costs

Signal s can be interpreted as the agent’s observable effort investment for the presentation

to the manager (e.g., Dewatripont and Tirole, 2005). For example, it represents the volume

of materials (e.g., reports, slides, etc.) that the agent prepares in advance for the presenta-

tion, or it measures how the materials are well organized and impressive. Furthermore, our

cost function implies that additional preparation is more costly, whereas the same level of

preparation is less costly if the quality of the new project is better.
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2.2.2 Interpretation of the investigation cost

Investigation cost d is interpreted as costs of information processing.16 As reports from the

agent would be technical (e.g., filled with terminology and figures that require expertise to

understand), the principal must pay decoding costs when she directly reads them. Hence,

the principal’s investigation cost could be large when she has to manage unfamiliar tasks, as

in the example in the introduction. Conversely, if the principal is promoted from a front-line

worker and has expertise in that problem, then her investigation cost could be small.

2.2.3 Interpretation of the restricted message space

The binary-message setup reflects categorization by middle managers. According to Floyd

and Wooldridge (1996), “[c]ategorization is one of the tangible results of the interpretation

process and a powerful way middle managers influence strategic thinking in others.” For

instance, middle managers label an issue as either an “opportunity” or a “threat” depending

on its potential gains/losses, captured by our binary-message setup. Furthermore, because

of its simple structure, categorization drastically economizes information-processing costs.

This corresponds to the assumption that the principal observes messages without costs.

2.2.4 Interpretation of signaling technologies

We assume that the agent sends costly signals, whereas the manager sends cheap-talk mes-

sages to clarify their fundamental differences in the hierarchical communication. On the

one hand, although original reports from front-line workers are filled with details, their in-

16It can be regarded as a direct cost of information acquisition, e.g., a transaction cost of conducting
skip-level communication with front-line workers.
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formativeness decreases in passing layers within the hierarchies due to categorization. On

the other hand, original reports require costly information processing, whereas categorized

messages are easier to understand. We adopt asymmetric signaling technologies to highlight

the trade-off between precise but costly signals and coarse but cheap messages.

2.2.5 Interpretation of investigation loss π

We assume that the manager bears loss π if the principal conducts an investigation, which

has several interpretations. First, the investigation cost is shared by the manager à la Bijkerk

et al. (2018). The investigation may also involve the manager and require his preparation.

Hence, such an extra effort investment is costly for the manager. Second, it can be interpreted

as the manager’s psychological costs. Because conducting the investigation implies that

the principal does not fully trust reports from the manager, it might bear his self-esteem.

Similarly, as the investigation implies that the manager has less influence on the principal’s

decision-making, he might feel losses (Bartling et al., 2014). Finally, because the principal

chooses this option when she suspects the manipulation by the manager, the loss can be

interpreted as a broad sense of lying costs (Kartik et al., 2007; Kartik, 2009).

3 Benchmarks

As preliminaries, we consider the following three benchmarks wherein the principal (i) di-

rectly observes the quality (first-best mode), (ii) commits to investigate (direct communica-

tion mode), and (iii) commits not to investigate (indirect communication mode).
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3.1 First-best mode

Because the principal directly observes quality θ, her decision-making is trivial: (i) r = rN

for certain, and (ii) y = yA if and only if θ > θSQ. Her ex ante expected utility V̄ is given by

V̄ :=

∫ θSQ

0

θSQdθ +

∫ 1

θSQ

θdθ =
1

2
(1 + θ2SQ), (4)

which is the first-best outcome for her.

Proposition 0 The principal’s optimal utility in the first-best mode is V̄ = (1 + θ2SQ)/2.

3.2 Direct communication mode

Because the manager’s message is uninformative in this scenario, the principal must conduct

the costly investigation to obtain information. When she chooses r = rI , the D1 criterion

and the optimality uniquely determine the equilibrium structure as denoted in Figure 2: the

agent signals whether the quality is higher than θSQ, and the principal’s project choice is

identical to that of the first-best mode.17 Hence, she obtains utility (1 + θ2SQ)/2− d in this

continuation game. However, if she chooses r = rN , then her project choice is only based on

the prior. That is, y = yA is chosen if and only if θSQ < 1/2, implying that she obtains the

expected utility max{1/2, θSQ} in this continuation game.

The characterization of the optimal D1 equilibrium depends on investigation cost d.

17The principal chooses action y = yI after observing signal s ∈ (0, s′) because she is indifferent between
actions y = yA and yI given the posterior satisfying the D1 criterion.
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Figure 2: Full-investigation equilibrium

Specifically, she chooses r = rI if and only if

1

2
(1 + θ2SQ)− d ≥ max

{
1

2
, θSQ

}
⇐⇒ d ≤ d̄(θSQ), (5)

where d̄(θ) := θ2SQ/2 if θSQ < 1/2 and (1−θSQ)2/2 otherwise. That is, if the investigation cost

is sufficiently small, then the principal certainly conducts the investigation and then correctly

learns the quality on the optimal equilibrium, which is referred to as a full-investigation

equilibrium. The principal’s ex ante expected utility in the full-investigation equilibrium is

given by

V F :=

∫ θSQ

0

θSQdθ +

∫ 1

θSQ

θdθ − d =
1

2
(1 + θ2SQ)− d. (6)

Otherwise, an uninformative equilibrium is optimal, on which she never investigates and
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then chooses a project based on the prior. Hence, her ex ante expected utility is V U :=

max{1/2, θSQ}. Note that any type of the agent chooses signal s = 0 in the uninformative

equilibrium. We hereafter refer to an equilibrium wherein more than one signal is sent as an

informative equilibrium for easy reference.

Proposition 1 Consider the direct communication mode. If d ≤ d̄(θSQ), then there exists

the full-investigation equilibrium and it is optimal. Otherwise, the unique D1 equilibrium is

uninformative.

3.3 Indirect communication mode

In this benchmark, the principal can access the information regarding the agent’s signal only

through cheap-talk messages from the manager. As in cheap-talk games à la Crawford and

Sobel (1982), the informativeness of cheap-talk communication depends on the manager’s

bias. Suppose that the manager has a pro-change bias, i.e., b > 0. When b is sufficiently

small, an informative equilibrium exists wherein the (i) agent signals whether the quality is

above threshold θ′, (ii) manager endorses the new project if and only if the signal is weakly

greater than threshold s′, and (iii) principal approves the new project if and only if it is

endorsed by the manager, as denoted in Figure 3. Otherwise, only uninformative equilibria

exist.

The principal’s welfare on the informative equilibrium increases as threshold θ′ is closer

to θSQ, but θ
′ = θSQ is never attainable on D1 equilibria provided that the manager has a

pro-change bias. The upper bound of the threshold is θSQ− b. Intuitively, if the threshold is

above the upper bound, then the agent has an incentive to deviate. Specifically, suppose that
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Figure 3: No-investigation equilibrium

θ′ > θSQ − b and the agent with type θ ∈ [θ′, 1] deviates from signal s′ to signal s′′ ∈ (0, s′).

The D1 criterion requires that the manager believes that the quality is θ = θ′ for certain

when he observes signal s′′. Because the manager prefers the new project (i.e., θ′ + b > θSQ)

and his endorsement induces its approval, his best response to signal s′′ is endorsing the

new project. However, because signal s′′ induces the principal’s approval with lower costs,

the agent has an incentive to deviate, indicating that the upper bound should be less than

θSQ − b.

This observation implies that the manager with anti-change biases may be more beneficial

to the principal than the pro-change-biased one. As demonstrated previously, the first-best

outcome is never attainable even if the bias is sufficiently small whenever the manager is pro-

change biased. It is, however, attainable if the manager is anti-change biased. Specifically,

if b < 0 and |b| ≤ bFB := (1 − θSQ)/2, then an informative equilibrium with threshold

θ′ = θSQ exists. Intuitively, the superiority of the anti-change manager can be understood
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as follows. When the manager is pro-change biased, the manager and agent are easy to

“collude.” That is, because the manager tends to prefer the new project, he would endorse

it even if the agent does not provide sufficient effort, which demotivates the agent’s costly

information transmission. Conversely, when the manager is anti-change biased, he behaves

as a “tough gatekeeper” because he tends to oppose the new project if the agent does not

provide sufficient effort. That is, the agent’s bias toward the new project is mitigated by

the anti-change manager as the tough gatekeeper, which disciplines information transmission

from the agent.18

Hereafter, an informative D1 equilibrium is referred to as a no-investigation equilibrium

if its threshold θ′ is closest to θSQ among any informative D1 equilibria, and θ∗(b) represents

the threshold of the no-investigation equilibrium. The principal’s ex ante expected utility in

the no-investigation equilibrium is given by

V N :=

∫ θ∗(b)

0

θSQdθ +

∫ 1

θ∗(b)

θdθ =
1

2
+ θSQθ

∗(b)− 1

2
θ∗(b)2. (7)

As mentioned in the following proposition, the no-investigation equilibrium is optimal when-

ever it exists in the indirect communication mode.

18This implication is reminiscent of Krishna and Morgan (2001), showing that the opposing biased experts
could induce a fully revealing equilibrium in sequential cheap-talk games. See Miura (2014) for detail.
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Proposition 2 Consider the indirect communication mode with θSQ > 1/2.19 If b ∈ (−(1−

θSQ), 1− θSQ], then there exists the no-investigation equilibrium and it is optimal, where

θ∗(b) =


θSQ − b if b ∈ (0, 1− θSQ],

θSQ if b ∈ [−bFB, 0),

2θSQ − 2b− 1 if b ∈ (−(1− θSQ),−bFB).

(8)

Otherwise, the unique D1 equilibrium is uninformative.

By comparing pro- and anti-change biases with the same absolute value, the superiority

of anti-change bias is formally summarized as follows.

Corollary 1 Under the indirect communication mode, the anti-change-biased manager is

weakly better than the pro-change-biased one for the principal.

It is worthwhile to mention the following as final remarks. First, the superiority of the

anti-change manager appears by considering a hierarchical communication model. That is,

this implication never appears once we consider a model where the manager directly observes

state θ. Second, in the no-investigation equilibrium, the manager has real authority in the

sense of Aghion and Tirole (1997). That is, the principal obeys the recommendation from

the manager, which is beneficial for him. Specifically, when b > 0, the optimal informative

equilibrium achieves the best outcome for the manager.

19The statement for θSQ < 1/2 is found in Appendix B.5.2.
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4 Value of Middle Managers

Now, we return to the model, where the principal potentially has two options to acquire the

information regarding signals: (i) direct acquisition by costly investigation and (ii) indirect

acquisition through the manager’s cheap-talk messages. Hereafter, this scenario is referred to

as a hybrid communication mode. First, we demonstrate that this mode has a new equilibrium

that never appears in the benchmarks. Then, we characterize the optimal equilibrium based

on investigation cost d and bias b.

4.1 Partial-investigation equilibrium

The interaction of these two options of information acquisition makes it possible for the

principal to conduct the investigation based on messages. Suppose that the manager has a

pro-change bias (i.e., b > 0). In this scenario, an equilibrium with the following structure

exists: (i) the agent’s strategy is a step function with two discontinuous points θ+ and θSQ,

(ii) the manager endorses the new project if and only if the observed signal is higher than s1,

(iii) the principal investigates only if the project is endorsed, and (iv) the principal approves

the new project if and only if her observation is either o = (mE, ∅) or (mE, s) with s ≥ s2, as

depicted in Figure 4. A remarkable aspect of this equilibrium is that the principal randomizes

r = rI and rN given message mE. This implies that investigation and no-investigation are

indifferent for the principal when she receives the endorsement. The principal’s indifference

condition determines the first discontinuous point θ+. Specifically,

1

1− θ+

(∫ θSQ

θ+

θSQdθ +

∫ 1

θSQ

θdθ

)
− d =

1

1− θ+

∫ 1

θ+

θdθ ⇐⇒ θ+ = θSQ − δ+, (9)
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Figure 4: Partial-investigation equilibrium

where δ+ := d +
√
d2 + 2(1− θSQ)d > 0. This equilibrium is hereafter referred to as a

partial-investigation equilibrium.20

A partial-investigation equilibrium is a mixture of full- and no-investigation equilib-

ria. That is, the principal basically follows the suggestion by the manager as in the no-

investigation equilibrium. However, because the manager tends to endorse unqualified

projects, the principal finds his affirmative suggestion less reliable. Thus, she investigates

the original signal as in the full-investigation equilibrium when she receives the endorse-

ment. Hence, this equilibrium demonstrates the coexistence of direct/indirect information

acquisition by the principal, which is frequently observed in real organizations, as discussed

in Section 4.3. Because of this coexistence, the existence of partial-investigation equilibria

20The partial-investigation equilibrium for b < 0 is similarly characterized. Specifically, (i) the agent’s
strategy is a step function with discontinuous points θSQ, and θ− := θSQ + δ−, (ii) the manager endorses
the new project if and only if s ≥ s2, (iii) the principal investigates only if the project is opposed, and (iv)
the principal rejects the new project if and only if either o = (mO, ∅) or (m, s) with s < s1 for any m, where
signals 0, s1, and s2 with 0 < s1 < s2 are sent on the equilibrium path and δ− := d +

√
d2 + 2θSQd. Note

that δ− is determined, so as the principal observing message m = mO is indifferent between r = rI and rN .
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Figure 5: Existence of partial-investigation equilibrium for b > 0

depends on both investigation cost d and bias b, as indicated in the following proposition.

Proposition 3 Consider the hybrid communication mode with θSQ > 1/2.21

(i) Suppose that b > 0. Then, a partial-investigation equilibrium exists if and only if

either one of the following holds: (a) b < (1 − θSQ)/2 and d < 2b2/(1 − θSQ + 2b) or

(b) b ≥ (1− θSQ)/2 and d ≤ (1− θSQ)/4.

(ii) Suppose that b < 0. Then, a partial-investigation equilibrium exists if and only if

either one of the following holds: (a) |b| ≤ 1 − θSQ and d < |b|2/[2(θSQ + |b|)] or (b)

|b| > 1− θSQ and d < (1− θSQ)
2/2.

A partial-investigation equilibrium exists for b > 0 in the shaded region of Figure 5. As

denoted in the diagram, the following two incentive conditions are potentially binding: (i)

21The characterization for θSQ < 1/2 can be found in Appendix B.6.
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d ≤ (1− θSQ)/4 and (ii) d < 2b2/(1− θSQ +2b). Condition (i) is equivalent to θSQ ≤ 1− δ+,

guaranteeing that the principal chooses y = yA if her observation is o = (mE, ∅). Condition

(ii) is equivalent to b > δ+/2, which is necessary for the manager sending m = mE when

he observes signal s = s1. Intuitively, a large bias is necessary for endorsing relatively

unqualified projects.22 Note that Conditions (i) and (ii) coincide when b = (1− θSQ)/2.
23

The following are our remarks regarding partial-investigation equilibria. First, partial-

investigation equilibria could exist even if the manager is sufficiently biased. Specifically, a

sufficiently biased manager who intends to mislead the principal is necessary to induce her

voluntary investigation. In this equilibrium, she investigates when she receives a suggestion

towards the manager’s preferred direction. However, when the manager is insufficiently

biased, she is reluctant to investigate because the manager’s suggestion can transmit credible

information without any intervention, as in the no-investigation equilibrium. Therefore, a

sufficiently biased manager is essential for providing investigation incentives.

Second, cheap-talk messages transmit credible information in partial-investigation equi-

libria even though the manager is sufficiently biased, which might appear counterintuitive.

This is because the principal’s investigation disciplines the manager’s information transmis-

sion. When the manager is sufficiently biased, he has few incentives to tell the truth. Once

the principal expects the manager’s suggestion to be useless, she directly investigates the

agent’s signal. Note that the manager prefers her not to investigate because the investi-

22The manager’s incentive condition of sending m = mO when the observed signal is s ∈ (0, s1) is also
potentially binding. Under Condition (ii), the manager’s all incentive conditions are satisfied by appropriately
choosing the investigation probability under the endorsement.

23Similarly, the binding incentive conditions for b < 0 are understood as follows. First, d < |b|2/[2(θSQ +
|b|)] is equivalent to |b| > δ−, which is necessary for the manager sending m = mO when he observes signal
s ∈ (s1, s2). As in Condition (ii) of the pro-change-biased manager, a sufficiently large magnitude is necessary
for opposing qualified projects. Second, d < (1− θSQ)

2/2 is equivalent to θ− < 1, which is necessary for the
well-defined agent’s equilibrium strategy. These conditions coincide when |b| = 1− θSQ.
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gation prevents the manager’s distortion and generates loss π > 0.24 Hence, the manager

has incentives to refrain from information distortion to less likely induce the investigation,

making the cheap-talk communication informative.25

Third, large π is unnecessary for the existence of partial-investigation equilibria. To

support the above equilibrium structure, the manager should oppose the new project if he

observes off-the-equilibrium-path signal s′ ∈ (0, s1). When the investigation cost is small

(i.e., d ≤ b2/[2(1− θSQ + b)]), θ+ is so close to θSQ that the manager prefers to endorse the

new project under signal s′. In this scenario, positive loss is necessary for incentivizing the

manager not to induce the agent’s deviation.26 Note that small but positive loss is sufficient

for the above argument. Conversely, if the cost is moderate (i.e., b2/[2(1 − θSQ + b)] < d <

2b2/(1− θSQ + 2b)), then θ+ is so far from θSQ that the manager observing signal s′ prefers

to oppose the new project. This implies that the manager’s incentive condition is never

binding. Therefore, a partial-investigation equilibrium exists for any nonnegative loss π.

Finally, the principal’s ex ante expected utility in the partial-investigation equilibrium

is relevant to investigation cost d and the sign of bias b whereas the magnitude of bias b is

irrelevant. Specifically, it is represented by

V P :=

∫ θSQ−δ(b)

0

θSQdθ +

∫ 1

θSQ−δ(b)

θdθ =
1

2
(1 + θ2SQ − δ(b)2), (10)

where δ(b) := δ+ if b > 0 and −δ− := −
(
d+

√
d2 + 2θSQd

)
otherwise. Note that V P is not

24Given this interpretation, loss π can be understood as a lying cost for the manager.
25Information acquisition by the receiver enhancing information transmission by the sender is pointed out

in the literature on cheap-talk games. See Miyahara and Sadakane (2020) and Sadakane and Tam (2022).
26If π = 0, then the principal must conduct full investigation. However, it implies that the agent of type

θ ∈ [θ+, θSQ) deviates to signal s = 0, which breaks down the partial-investigation equilibrium.
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dependent on |b|, which is also a contrast to the no-investigation equilibrium.

4.2 Optimal equilibria

We characterize the optimal equilibrium in the hybrid communication mode. As candidates

of the optimal equilibria, without loss of generality, we can restrict our attention to the

full-, no-, and partial-investigation equilibria, although other equilibria might exist.27 Note

that, even in the hybrid communication mode, the existence of the full- and no-investigation

equilibria is identically characterized as in Propositions 1 and 2, respectively.28 Define d+ :=

b2/[2(1− θSQ+ b)], and d− := (2|b|− 1+ θSQ)
2/[2(2|b|− 1+2θSQ)]. The optimal equilibrium

is characterized as follows.

Proposition 4 Consider the hybrid communication mode with θSQ > 1/2.29

(i) Suppose that b > 0.

(a) If b ≤ 1− θSQ and d ≥ d+, then the no-investigation equilibrium is optimal.

(b) If either [b < 1 − θSQ and d < d+] or [b ≥ 1 − θSQ and d ≤ (1 − θSQ)/4], then a

partial-investigation equilibrium is optimal.

(c) Otherwise, an uninformative equilibrium is optimal.

(ii) Suppose that b < 0.

27For example, a non-monotonic equilibrium exists, wherein the sender’s strategy is a step function with
two discontinuous points, and the manager sends the same message if he observes signals associated with the
left and right intervals. However, this equilibrium is never optimal. The detail is available from the authors
upon request.

28Specifically, an informative D1 equilibrium exists such that the manager adopts a babbling strategy, e.g.,
ϕ∗(s) = mE for any s, which is associated with the full-investigation equilibrium. Similarly, an informative
D1 equilibrium also exists such that the agent’s strategy is a step function with a unique discontinuous
point and the manager’s strategy is a surjection, which is associated with the no-investigation equilibrium.
Detailed proofs are available from the authors upon request.

29The statement for θSQ < 1/2 is found in Appendix B.7.
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(Note: NI, PI, and U mean no-investigation, partial-investigation, and uninformative equilibria, respectively.)

Figure 6: Optimal equilibria for b > 0 and θSQ > 1/2

(a) If either [|b| ≤ bFB] or [|b| ∈ (bFB, 1− θSQ] and d > d−], then the no-investigation

equilibrium is optimal.

(b) If either [|b| ∈ (bFB, 1− θSQ] and d ≤ d−] or [|b| > 1− θSQ and d < (1− θSQ)
2/2],

then a partial-investigation equilibrium is optimal.

(c) Otherwise, an uninformative equilibrium is optimal.

Proposition 4 is summarized in Figures 6 and 7. In the northwest region (of the dia-

gram), the no-investigation equilibrium is optimal. The indirect acquisition relying on the

manager’s messages is optimal because the manager’s bias is relatively small compared with

the investigation cost. Conversely, a partial-investigation equilibrium is optimal in the south-

east region, where the investigation costs are relatively small compared with the manager’s

bias. Because an investigation is a reasonable option and the manager’s message tends to
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(Note: FB, NI, PI, and U mean the no-investigation equilibrium with the first-best outcome, no-investigation,

partial-investigation, and uninformative equilibria, respectively.)

Figure 7: Optimal equilibria for b < 0 and θSQ > 1/2

be incredible, involving the direct acquisition is beneficial for the principal. Finally, when

the manager’s bias and the investigation cost are sufficiently large, i.e., the northeast region,

the direct acquisition is too costly, and the indirect acquisition is incredible. Consequently,

no information is transmitted. Proposition 4 derives the following implication.

Corollary 2 Consider the hybrid communication mode. Then, the full-investigation equi-

librium is never optimal.

The suboptimality of the full-investigation equilibrium is understood as follows. First,

note that there is no region where only the full-investigation equilibrium exists. That is,

when this equilibrium exists, either the no- or a partial-investigation equilibrium also exists.

Second, the full-investigation equilibrium is dominated by a partial-investigation equilib-

rium when both equilibria exist, e.g., θSQ > 1/2, b > 0, and d < min{2b2/(1 − θSQ +
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2b), (1 − θSQ)
2/2}. Intuitively, a partial-investigation equilibrium is more “efficient” than

the full-investigation equilibrium. In the full-investigation equilibrium, the principal has to

pay investigation cost d for certain. Contrary, a partial-investigation equilibrium involves

the message-contingent investigation; that is, the principal randomizes the investigation only

when she receives a less credible message. In summary, she can save the investigation cost by

simply following the manager’s suggestion when receiving a relatively credible message, which

derives the superiority of partial-investigation equilibria. Finally, the full-investigation equi-

librium is dominated by the no-investigation equilibrium when all but partial-investigation

equilibria exist, e.g., θSQ > 1/2 and d ∈ [2b2/(1 − θSQ + 2b), (1 − θSQ)
2/2]. Because the

manager’s bias is relatively small, the cheap-talk communication sufficiently transmits in-

formation. Although the principal is more likely to select the correct project under the

investigation, the gain is too small to compensate for the investigation cost because d is

sufficiently large in this parameter range. Consequently, the full-investigation equilibrium is

never optimal.

Corollary 2 has the following implications. First, it provides a rationale for having middle

managers in organizations.30 On the one hand, the full-investigation equilibrium is regarded

as a “flat organization,” where the boss and the subordinates communicate directly. On the

other hand, the no- or a partial-investigation equilibrium is associated with a “hierarchi-

30Corollary 2 highlights the contrast from Garicano (2000). He adopts a team-theoretical approach and
shows that the trade-off between communication and knowledge acquisition costs determines the optimal
organizational structure. Specifically, if communication costs are relatively small (resp. large) compared
with knowledge-acquisition costs, then the optimal organization has hierarchical (resp. flat) structures.
Although communication costs are exogenously given in Garicano (2000), they are endogenously determined
as losses due to the manager’s manipulation in this paper. The suboptimality of flat organizations suggests
that communication costs are smaller than knowledge acquisition costs measured by d, which is uncovered
by our game-theoretical analysis. This observation is consistent with Colombo and Grilli (2013), which
report that shifting toward hierarchical organizations is more supported by the information-processing-cost
argument rather than the agency-costs argument.
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cal organization,” where the boss and subordinates indirectly communicate through middle

managers. Given these interpretations, Corollary 2 claims that having middle managers

is beneficial for the boss, which could explain why many real organizations still have hi-

erarchical structures. We refer to the benefit as the value of middle managers (hereafter,

VoM). Furthermore, we would like to emphasize that the VoM always appears irrelevant to

managers’ biases and investigation costs, which is rarely highlighted in the literature.31

Second, it claims that the boss with expertise should also have middle managers. As

mentioned in Section 2.2.2, the principal with low investigation costs is interpreted as the

boss with expertise. If middle managers are regarded as “translators” of the agent’s technical

reports, then they seem unnecessary for the boss who can directly understand them. How-

ever, Corollary 2 disagrees with this statement; that is, middle managers are still beneficial

for the boss with expertise.32

4.3 A case study

British private sectors provide a notable example of the coexistence of direct and indirect

communication channels within a broad sense of organization. Specifically, employee voice

is regarded as communication between employees and employers. As its outlets, the firms

are often equipped with either one of the following two communication channels. The first

channel is the conventional union voice, where unions aggregate employee voice and tell it

31Bloom et al. (2014) claim that reducing information acquisition costs makes organizations flatter. The
discrepancy between our and their arguments can be understood as follows. First, their theory is orthogonal
to ours in terms of strategic interactions. Furthermore, because their empirical analysis is not time series,
it does not exclude the possibility that flattered firms reinstall hierarchical structures after recognizing their
suboptimality, as in the Google example mentioned previously.

32It is reminiscent of Crémer et al. (2007). They show that hierarchical organizations are optimal when a
broad sense of investigation costs is not extreme. Our result enhances the benefits of hierarchical organiza-
tions by incorporating strategic communication within organizations.
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to employers (e.g., bargaining between management and trade unions). The second one

is the non-union voice, involving a direct two-way communication between employees and

employers (e.g., problem-solving groups that “solve specific problems or discuss aspects of

performance or quality” (Bryson, 2004)). The former and latter are associated with the

indirect communication through the manager and direct investigation by the principal in

our setup, respectively. According to Bryson et al. (2013), about 20% of the British private

firms in 1980–2004 adopted both channels, which is referred to as the dual-voice regime.

Because both communication channels are active in the dual-voice regime, it corresponds to

a partial-investigation equilibrium.

The dual-voice regime shows (weakly) better performance than the alternatives. Bryson

et al. (2013) compare the performance of four regimes: no-voice, union-only-voice, non-

union-only-voice, and dual-voice regimes. Note that the first three regimes represent firms

where employees and employers do not communicate, communicate only through unions,

and communicate directly without unions, respectively. Hence, in our framework, these four

regimes are interpreted as uninformative, no-investigation, full-investigation, and partial-

investigation equilibria, respectively. Bryson et al. (2013) show that firms with the dual-voice

regime demonstrate the highest usage of human management resource practices, indicating

the highest organizational performance.33 Assuming that unions have biases toward em-

ployees and sufficiently disagree with employers seems natural, which might be associated

with the manager with b > 0 and its magnitude being not small in our model. Given this

interpretation, the superiority of the dual-voice regime represents the VoM.

33In the literature on human resource management, the positive relationship between the usage of human
resource management practices and organizational performance is well documented. See, for example, Huselid
(1995).
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5 Decomposition of the VoM

In this section, we investigate the VoM from the following two perspectives. First, we specify

the dominant reason for generating the VoM. Second, we clarify the optimal direction of

managers’ biases.

5.1 Information and cost-saving values

The benefit of hierarchical communication can be decomposed into two-folds. The first bene-

fit is choosing the correct project by learning information via cheap-talk communication. The

second benefit arises from saving the investigation cost by conducting a message-contingent

investigation. In this subsection, we clarify which sub-value is dominant in the VoM. For

easy exposition, the first and second benefits are referred to as information and cost-saving

values, respectively.

Formally, these sub-values are defined as follows. We consider the following four scenarios

and compare the principal’s optimal equilibrium payoffs. The first scenario is a counterfac-

tual case in which the principal has no option to obtain information. The second scenario is

the indirect communication mode, where only the communication with the manager is avail-

able to the principal. The third scenario is the direct communication mode, where only the

investigation is available to the principal. Finally, the fourth scenario is the hybrid commu-

nication mode, where both communication and investigation are available. Let Vi represent

the principal’s optimal equilibrium payoff in the ith scenario, and define ΛI := V2 − V1 and

ΛC := V4 − V3, respectively.

When investigation cost d is sufficiently small, ΛI and ΛC represent the information and
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cost-saving values, respectively. Specifically, we assume that d < min{θ2SQ/2, (1− θSQ)
2/2},

guaranteeing that V3 = V F and V4 = V N or V P . Because ΛI represents the payoff difference

between the indirect communication mode and the no-information scenario, it measures the

gain on learning more precise information irrelevant to the investigation effects, which is the

information value. Similarly, ΛC represents the payoff difference between the hybrid and

the direct communication modes. Because the principal obtains full information by paying

the maximum investigation cost on the full-investigation equilibrium, the superiority of V N

and V P over V F comes from the reduction of investigation costs. Hence, we regard ΛC as

a measurement of the cost-saving value. By comparing ΛI and ΛC , we obtain the following

proposition: the information value is dominant if and only if the manager is not sufficiently

biased.

Proposition 5 Suppose that d < min{θ2SQ/2, (1− θSQ)
2/2}. Then, there exists β(θSQ, b, d)

such that |b| ≤ β(θSQ, b, d) if and only if ΛI ≥ ΛC.

Regarding the relationship between communication and investigation, Proposition 5 can

be restated as follows. Note that ΛI and ΛC represent the marginal gains of communication

when the investigation is unavailable and available, respectively. As an analogy of supermod-

ularity, we say that communication and investigation are substitutes (resp. complements) if

ΛI > ΛC (resp. ΛI < ΛC), which derives the restatement of Proposition 5.

Corollary 3 Suppose that d < min{θ2SQ/2, (1−θSQ)2/2}. Then, communication and the in-

vestigation are substitutes (resp. complements) if |b| < β∗(θSQ, b, d) (resp. |b| > β∗(θSQ, b, d)).
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Because the manager has little incentive to manipulate when bias is small, commu-

nication is sufficiently credible even without the investigation. Thus, the principal obtains

sufficiently precise information. Consequently, communication and the investigation are sub-

stitutes because gains from communication are “overlapped” with those of the investigation.

Conversely, when bias is large, communication is useless without the investigation because

the manager has much incentive to execute manipulation. However, as mentioned previously,

the investigation makes communication more credible. Furthermore, owing to the credible

communication enhanced through the investigation, the principal conducts the investigation

more efficiently via the message-dependent investigation. That is, the options are comple-

ments in the sense of the “mutual enhancing relationship”: the investigation enhances the

benefit of communication, which also enhances the benefit of the investigation.

The following is the intuition of Proposition 5. Note that the information value can

be replaced by the investigation, but the cost-saving value cannot be. In this sense, the

information value is mitigated by the gain from the investigation, whereas the cost-saving

value is reinforced with it. Given this interpretation, the substitutability under small bias

suggests that the information value, namely the competitive value, is the main source of the

VoM. In contrast, the complementarity under large bias suggests that the cost-saving value,

namely, the non-competitive one, is dominant.

5.2 Pro-change bias vs. anti-change bias

So far, we have demonstrated the asymmetry between the pro-change- and anti-change-

biased manager. This subsection clarifies the optimal direction of the bias for the principal.
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Specifically, we compare the principal’s optimal equilibrium payoffs under positive and neg-

ative biases with the same absolute value. Note that both no- and partial-investigation

equilibria have threshold θ′ at which the equilibrium project choice is switched, and then

distance |θ′− θSQ| represents the length of the “incorrect-project-choice region.”34 The prin-

cipal’s equilibrium payoff is decreasing in |θ′ − θSQ|. Then, by comparing the lengths under

biases b = |b′| and −|b′|, we obtain the following proposition. Let b+ := (1− θSQ + δ+)/2.

Proposition 6 Consider the hybrid communication mode with θSQ > 1/2.35

(i) Suppose that d > (1−θSQ)/4. Then, the anti-change-biased manager is always (weakly)

better for the principal.

(ii) Suppose that d ≤ (1− θSQ)/4. Then, the anti-change-biased manager is better for the

principal if and only if |b| ≤ b+.

Proposition 6 is summarized in Figures 8 and 9.36 When the investigation cost is so large

that the investigation is never conducted in equilibrium irrelevant to the direction of the

bias (i.e., d > (1− θSQ)/4), the anti-change-biased manager is better for the principal. The

reason for the superiority of the anti-change-biased manager is owing to the enhancement

of information transmission from the agent. Specifically, the anti-change-biased manager

and the agent disagree with the acceptance of the new project, which disciplines the agent’s

costly information transmission, as mentioned in Corollary 1.

However, when the investigation cost is sufficiently small to investigate in equilibrium

34θ′ = θ∗(b) for the no-investigation equilibrium, and θ′ = θ+ or θ− for the partial-investigation equilib-
rium.

35The statement for θSQ < 1/2 can be found in Appendix B.9.
36The diagram for (1− θSQ)

2/2 ≤ d ≤ (1− θSQ)/4 is qualitatively equivalent to that in Figure 9.
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Figure 8: Pro- and anti-change biases for d > (1− θSQ)/4

Figure 9: Pro- and anti-change biases for d < (1− θSQ)
2/2
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(i.e., d ≤ (1− θSQ)/4), the pro-change-biased manager may be optimal. Note that the pro-

change bias under θSQ > 1/2 can be interpreted as bias toward an ex ante suboptimal project

(referred to as the underdog project). The reason for the superiority of the pro-underdog-

biased manager is owing to the cost-saving value. If the manager has bias for the ex ante

optimal project, then he has a strong incentive to execute manipulation because the preferred

project is selected unless the principal obtains information. Hence, the principal conducts

the investigation more frequently to suppress the agent’s manipulation. On the other hand,

the pro-underdog-biased manager has an incentive to transmit credible information to change

the principal’s prior evaluation. As the message transmits credible information, the principal

refrains the investigation, which benefits her.

With the decomposition of the VoM defined above, we have implications regarding the

optimal direction of the bias. First, anti-change bias enhances the information value of

the VoM. When the investigation is sufficiently costly, or the bias magnitude is sufficiently

small, the information value is dominant, as demonstrated in Proposition 5. Hence, in this

scenario, the anti-change bias becomes optimal. Second, the pro-underdog bias enhances

the cost-saving value of the VoM. Because the cost-saving value is dominant when the bias

magnitude is sufficiently large, the optimal direction of the bias in this scenario should

prioritize this sub-value. That is, the pro-underdog-biased manager is optimal.37

37When θSQ < 1/2, the anti-change bias is also the pro-underdog bias. Consequently, the pro-change-
biased manager is always optimal. The detail can be found in Appendix B.9.
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6 Conclusion

We discussed the value of middle managers by considering a hierarchical communication

model in which the principal has two channels to learn the agent’s private information: com-

munication with the manager and the costly investigation. The key mechanism behind our

arguments is interaction of these two options. We show that commitments to a costly in-

vestigation (i.e., the full-investigation equilibrium) are always dominated by communication

involving the manager. Specifically, when the investigation cost is sufficiently small and the

manager is sufficiently biased, the costly investigation disciplines information transmission

from the biased manager. Then, the principal can save the investigation cost by relying on

the recommendation from the manager.

We then investigated the value of middle managers from the following two aspects. First,

we decompose the value into information and cost-saving values and clarify which sub-value

is the main source of the gain from having the manager. Because communication and the

investigation are substitutes (resp. complements) when the manager’s bias is small (resp.

large), the information (resp. cost-saving) value is the main source of the gains from having

the manager. Second, we characterize the optimal direction of the manager’s bias. The

anti-change-biased manager is optimal when the bias magnitude is small because that bias

enhances the information value through facilitating information transmission from the agent.

However, if the bias magnitude is large, then the pro-underdog-biased manager is optimal

because that bias enhances the cost-saving value through providing credible messages.

Our results shed light on the advantage of hierarchies in terms of the interaction between

communication and costly investigation. Although we focused on a particular context to
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clarify our argument, this perspective could be useful for understanding other phenomena

that involve hierarchical structures (e.g., communication between politicians and voters via

mass media), which is left for future research.

A Appendix: Proofs

This section provides the definition of equilibrium notion and the proofs of the main results.

The proofs of the auxiliary results are postponed in Appendix B.

A.1 Optimal D1 equilibria

A.1.1 Definition and properties

The strategies and beliefs are defined as follows. Let σ : Θ → S represent the agent’s

strategy. Let ϕ : S →M and µ : S → ∆(Θ) represent the manager’s strategy and posterior

belief about the quality, respectively.38 The principal’s strategy is represented by double

ψ := (ψr, ψy), where ψr : M → ∆(R) and ψy : O → ∆(Y ) denote her local strategies at

the investigation and project-choice stages, respectively. The principal’s posterior belief is

also given by double ν := (νr, νy), where νr : M → ∆(S) and νy : O → ∆(Θ) represent her

beliefs about the signal at the investigation stage and the quality at the project-choice stage,

respectively. Let e := (σ, ϕ, ψ;µ, ν) represent an assessment.

As auxiliary notation, let ρ : S ×M × R → O represent the principal’s observation at

38For simplification, we restrict our attention to equilibria where the agent and manager adopt pure strate-
gies. While allowing their mixed strategies might quantitatively change the results, qualitative properties
seem to remain.
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the project-choice stage, defined by

ρ(s,m, r) :=


(m, s) if r = rI ,

(m, ∅) otherwise.

(A.1)

With some abuse of notation ρ−1 : O → R specifies the principal’s behavior at the investi-

gation stage inducing observation o, defined by

ρ−1(o) :=


rI if o ∈M × S,

rN otherwise.

(A.2)

Furthermore, let supp(F ) represent the support of distribution F .

Definition 1 PBE

Assessment e∗ = (σ∗, ϕ∗, ψ∗;µ∗, ν∗) is a PBE if it satisfies the following conditions.

(i) For each θ ∈ Θ,

σ∗(θ) ∈ argmax
s∈S

∑
r∈R

∑
y∈Y

ψ∗
r(r | ϕ∗(s))ψ∗

y (y | ρ(s, ϕ∗(s), r)) u(θ, s, y). (A.3)

(ii) For each s ∈ S,

ϕ∗(s) ∈ arg max
m∈M

∑
r∈R

∑
y∈Y

ψ∗
r(r | m)ψ∗

y(y | ρ(s,m, r))
∫ 1

0

w(θ, r, y)dµ∗(θ | s). (A.4)
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(iii) For each m ∈M , (a) ψ∗
r(rI | m) > 0 implies that

∫
s∈S

∑
y∈Y

ψ∗
y(y | m, s)

∫ 1

0

v(θ, rI , y)dν
∗
y(θ | m, s)dν∗r (s | m)

≥
∑
y∈Y

ψ∗
y(y | m,ϕ)

∫ 1

0

v(θ, rN , y)dν
∗
y(θ | m,ϕ), (A.5)

and (b) if (A.5) holds with strict inequality, then ψ∗
r(rI | m) = 1 holds.

(iv) For each o ∈ O and y ∈ supp(ψ∗
y(o)),

y ∈ argmax
y′∈Y

∫ 1

0

v
(
θ, ρ−1(o), y′

)
dν∗y(θ | o). (A.6)

(v) µ∗, ν∗r , and ν
∗
y are derived from σ∗ and ϕ∗ by using Bayes’ rule on the equilibrium path.

(vi) For each off-the-equilibrium-path observation o = (m, ∅), ν∗y(m, ∅) is derived from σ∗

and ϕ∗ by using Bayes’ rule whenever possible.

(vii) For each off-the-equilibrium-path observation o = (m, s), ν∗y(m, s) = µ∗(s).

The definition of PBE is standard except for conditions (vi) and (vii).39 Especially,

condition (vii) requires that if the principal observes both signal s and message m, then her

belief about the quality only depends on the signal. It imposes a kind of “consistency” of

beliefs in the sense that the principal and the manager share the same beliefs if the principal

knows what the manager knows. This property is referred to as the signal-priority condition.

39Because our model is a multi-stage signaling game, off-the-equilibrium-path beliefs should be derived
using Bayes’ rule whenever possible (Fudenberg and Tirole, 1991). This requirement is associated with
Condition (vi).
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Given PBE e∗, let U∗(θ) represent the agent’s equilibrium utility when the quality is θ,

which is defined by

U∗(θ) :=
∑
r∈R

∑
y∈Y

ψ∗
r (r | ϕ∗(σ∗(θ)))ψ∗

y (y | ρ(σ∗(θ), ϕ∗(σ∗(θ)), r)) u(θ, σ∗(θ), y). (A.7)

With some abuse of notation, define

U∗(θ, s) :=
∑
r∈R

ψ∗
r(r | ϕ∗(s))ψ∗

y(yA | ρ(s, ϕ∗(s), r))− C(θ, s)

:= G(s)− C(θ, s) (A.8)

for each θ ∈ Θ and s ∈ S. Note that G(s) represents the probability of approving a new

project under signal s (i.e., the agent’s gross payoff from sending signal s), and U∗(θ, σ∗(θ)) =

U∗(θ) holds. Similarly, let V ∗ represent the principal’s ex ante equilibrium utility defined by

V ∗ :=

∫ 1

0

∑
r∈R

∑
y∈Y

ψ∗
r(r | ϕ∗(σ∗(θ)))ψ∗

y(y | ρ(σ∗(θ), ϕ∗(σ∗(θ)), r))v(θ, r, y)dθ. (A.9)

Define γ(θ, s) := U∗(θ) + C(θ, s), which represents a compensated gain for type-θ agent ob-

taining her equilibrium payoff U∗(θ) by sending signal s. Let S+(σ∗) := { s ∈ S | ∃θ ∈ Θ s.t. σ∗(θ) = s }

and S−(σ∗) := S\S+(σ∗) represent the set of on-the-equilibrium-path and off-the-equilibrium-

path signals, respectively. Let M+(σ∗, ϕ∗) := {m ∈M | ∃θ ∈ Θ s.t. ϕ∗(σ∗(θ)) = m } repre-

sent the set of on-the-equilibrium-path messages under equilibrium e∗. Let #(X) denote the

cardinality of set X. Let U(X) and D(x) represent a uniform distribution on set X and a

degenerate distribution on point x, respectively.
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Definition 2 D1 Criterion (Cho and Kreps, 1987)

PBE e∗ satisfies the D1 criterion if it satisfies the following condition: for any s ∈ S−(σ∗)

and θ ∈ Θ, if there exists θ′ ∈ Θ such that γ(θ, s) > γ(θ′, s), then θ /∈ supp (µ∗(· | s)).

Intuitively, the D1 criterion eliminates a type from the support of the posterior if he

is less likely to deviate in terms of the compensated gain. Because γ(θ, s) represents the

minimal gain forcing type θ to deviate to signal s, γ(θ, s) > γ(θ′, s) means that type θ′ is

“easier” to deviate than type θ. The D1 criterion requires that, after observing deviation to

signal s, type θ is never the deviant. The implication of the D1 criterion in our framework

is summarized as follows.

Lemma 1 Suppose that e∗ is a PBE. Then, e∗ satisfies the D1 criterion if and only if the

following conditions hold.

(i) If σ∗ is discontinuous at θ′, then for any off-the-equilibrium-path signal

s ∈ [limθ↑θ′ σ
∗(θ), limθ↓θ′ σ

∗(θ)] and message m ∈M , µ∗(θ′ | s) = ν∗y(θ
′ | m, s) = 1 hold.

(ii) For any off-the-equilibrium-path signal s > σ∗(1) and message m ∈ M , µ∗(1 | s) =

ν∗y(1 | m, s) = 1.

In contrast to the standard signaling games, our hierarchical communication structure

prevents the D1 criterion from selecting a unique outcome, demonstrated as follows.

Lemma 2 There always exists an uninformative D1 equilibrium.

Hence, to obtain sharp predictions, we additionally impose the following restriction.
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Definition 3 Optimality

A D1 equilibrium is optimal if there exists no D1 equilibrium in which the principal’s ex ante

equilibrium utility is strictly greater.

Finally, we introduce a useful fact for characterizing equilibria.

Claim 1 For any PBE e∗, if there exist s, s′ ∈ S+(σ∗) with s < s′, then G(s) < G(s′) holds.

A.1.2 Proof of Lemma 1

A.1.2.1 Preliminaries

Lemma 3 Suppose that e∗ is a PBE. Then, the following holds.

(i) σ∗ is nondecreasing in θ.

(ii) σ∗ is differentiable in θ almost everywhere.

(iii) σ∗ is constant whenever differentiable.

(iv) U∗ is continuous in θ.

Lemma 4 Suppose that e∗ is a PBE.

(i) Suppose that σ∗ is discontinuous at θ′. Then, for any off-the-equilibrium-path signal

s ∈ [limθ↑θ′ σ
∗(θ), limθ↓θ′ σ

∗(θ)] and θ ̸= θ′, γ(θ, s) > γ(θ′, s) holds.

(ii) For any off-the-equilibrium-path signal s > σ∗(1) and θ < 1, γ(θ, s) > γ(1, s) holds.
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Proof of Lemma 4. (i) Fix off-the-equilibrium-path signal s ∈ [limθ↑θ′ σ
∗(θ), limθ↓θ′ σ

∗(θ)], ar-

bitrarily. By Lemma 3-(ii) and (iii), there exist a set of open intervals {(0, θ1), (θ1, θ2), . . . , (θn, 1)}

such that σ∗ is constant on each interval.40 Without loss of generality, assume that θi = θ′.

First, we consider interval (θi−1, θ
′). Let s′ := σ∗(θ) for any θ ∈ (θi−1, θ

′). Note that,

by Lemma 3-(i), we have s′ < s. By Lemma 3-(iv), we have U∗(θ′) = limθ↑θ′ U
∗(θ) =

G(s′)−C(θ′, s′) and U∗(θi−1) = limθ↓θi−1
U∗(θ) = G(s′)−C(θi−1, s

′). Now, fix θ′′ ∈ [θi−1, θ
′),

arbitrarily. Hence,

γ(θ′′, s)− γ(θ′, s) = (G(s′)− C(θ′′, s′) + C(θ′′, s))− (G(s′)− C(θ′, s′) + C(θ′, s))

= (C(θ′′, s)− C(θ′′, s′))− (C(θ′, s)− C(θ′, s′)) > 0, (A.10)

where the inequality comes from the fact that θ′′ < θ′ and Cθs < 0. Next, consider interval

[θi−2, θi−1). By applying the same argument, we can show that γ(θ′′′, s) > γ(θi−1, s) holds

for any θ′′′ ∈ [θi−2, θi−1), which implies that γ(θ′′′, s) > γ(θ′, s). By inductively applying the

above argument to intervals [0, θ1), . . . , [θi−3, θi−2), we can show that γ(θ, s) > γ(θ′, s) holds

for any θ < θ′. Similarly, we can show that γ(θ, s) > γ(θ′, s) holds for any θ > θ′.

(ii) By applying the similar argument used in the proof of Part (i), we can show the

statement. ■

A.1.2.2 Proof of Lemma 1

(Sufficiency) Suppose that conditions (i) and (ii) hold. By combining the hypothesis and

Lemma 4, we immediately conclude that e∗ satisfies the D1 criterion.

40We can show that the number of intervals is at most finite by the similar argument used in Section B.3.4.
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(Necessity) Suppose, in contrast, that e∗ satisfies the D1 criterion, but either Condition

(i) or (ii) is violated. First, suppose that Condition (i) is violated; that is, there exists dis-

continuous point θ′ of σ∗ and off-the-equilibrium-path signal s ∈ [limθ↑θ′ σ
∗(θ), limθ↓θ′ σ

∗(θ)]

such that µ∗(θ′ | s) ̸= 1. However, because Lemma 4-(i) implies that γ(θ, s) > γ(θ′, s) for

any θ ̸= θ′, the D1 criterion requires that µ∗(θ′ | s) = 1, which is a contradiction. For the

scenario where Condition (ii) is violated, we can derive a contradiction by using a similar

argument. Therefore, both conditions must hold. ■

A.2 Proof of Proposition 1

Without loss of generality, we assume that the manager commits to strategy ϕ∗(s) = mE for

any s ∈ S in this scenario.

A.2.1 Preliminaries

Lemma 5 Consider the direct communication mode. If e∗ is an informative D1 equilibrium,

then (i) #(S+(σ∗)) = 2, (ii) θ∗ ≤ θSQ, and (iii) ψ∗
r(rI | mE) > 0 hold, where θ∗ is a

discontinuous point of σ∗.

Note that for any θ ∈ (0, 1), there exists an informative PBE where σ∗ is discontinuous at

θ. Nevertheless, the D1 criterion eliminates ones whose discontinuous points are higher than

θSQ. Furthermore, there are still multiple informative D1 equilibria.
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A.2.2 Proof of Proposition 1

Suppose that θSQ > 1/2 and d ≤ d̄(θSQ).
41 First, we show that the following constitutes the

full-investigation equilibrium:

σ∗(θ) =


0 if θ < θSQ,

1 + θSQ otherwise,

ϕ∗(s) = mE for any s,

ψ∗
r(m) = rI for any m,

ψ∗
y(o) =


yA if o = (m, s) with s ≥ 1 + θSQ for any m,

yR otherwise,

(A.11)

µ∗(s) =



U([0, θSQ)) if s = 0,

U([θSQ, 1]) if s = 1 + θSQ,

D(θSQ) if s ∈ (0, 1 + θSQ),

D(1) otherwise,

ν∗r (s | m) =


θSQ if s = 0 for any m,

1− θSQ if s = 1 + θSQ for any m,

ν∗y(o) =


µ∗(s) if o = (m, s),

U([0, 1]) otherwise.

Given ν∗y , the optimality of ψ∗
y is obvious. Given ν∗r and ψ∗

y , the principal’s expected payoffs

from r = rI and rN are (1 + θ2SQ)/2 − d and θSQ, respectively. Because d ≤ d̄(θSQ), the

41The proof for the scenario of θSQ < 1/2 is omitted because it is essentially equivalent to that presented
here.
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former is higher, implying that ψ∗
r is optimal.

The optimality of σ∗ is as follows. Note that for type θ = θSQ, signals s = 0 and 1 + θSQ

are indifferent, i.e., 1 − C(θSQ, 1 + θSQ) = 0. Because Cθ < 0, type θ ∈ [0, θSQ) (resp.

[θSQ, 1]) has no incentive to deviate to s = 1 + θSQ (resp. 0). It remains to show that

any type never deviates to off-the-equilibrium-path signals. For type θ ∈ [0, θSQ), he has

no incentive to deviate to signal s ∈ (0, 1 + θSQ) because action y = yR is induced with

paying more signaling costs. He also has no incentive to deviate to signal s > 1 + θSQ

because U∗(θ) > U∗(θ, 1 + θSQ) > U∗(θ, s). Similarly, for type θ ∈ [θSQ, 1], he has no

incentive to deviate to signal s ∈ (0, 1 + θSQ) because U
∗(θ) ≥ U∗(θ, 0) > U∗(θ, s). He also

has no incentive to deviate to signal s > 1 + θSQ because y = yA is induced with paying

more signaling costs. Obviously, µ∗, ν∗r , and ν
∗
y satisfy Conditions (v), (vi), and (vii) of the

definition of PBE. Therefore, e∗ is a PBE. Furthermore, Lemma 1 immediately implies that

e∗ is a D1 equilibrium.

Next, we show that the full-investigation equilibrium is optimal when d ≤ d̄(θSQ). Sup-

pose, in contrast, that there exists D1 equilibrium e′ that strictly dominates full-investigation

equilibrium e∗; that is, V ′ > V F , where V ′ represents the principal’s ex ante expected payoff

on equilibrium e′. Because V F ≥ V U holds when d ≤ d̄(θSQ), V
′ > V F implies that e′

is also an informative equilibrium. Hence, by Lemma 5, #(S+(σ′)) = 2, θ′ ≤ θSQ, and

ψ′
r(rI | mE) > 0 must hold, where θ′ is the discontinuous point of σ′. Hence,

V ′ = ψ′
r(rI | mE)

[∫ θ′

0

θSQdθ +max

{∫ 1

θ′
θSQdθ,

∫ 1

θ′
θdθ

}
− d

]
+ (1− ψ′

r(rI | mE))V
U

:= ψ′
r(rI | mE)V

′′ + (1− ψ′
r(rI | mE))V

U . (A.12)
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As V ′ > V F ≥ V U , we should have V ′′ > V F . However,

V ′′ <

∫ θSQ

0

θSQdθ +

∫ 1

θSQ

θdθ − d = V F , (A.13)

which is a contradiction. Therefore, we conclude that full-investigation equilibrium is opti-

mal.

Finally, suppose that d > d̄(θSQ). While informative equilibria never exist because in-

vestigation cost d exceeds the first-best outcome V̄ , uninformative equilibria still exist by

Lemma 2. Thus, an uninformative equilibrium is optimal. ■

A.3 Proof of Proposition 2

A.3.1 Preliminaries

Lemma 6 Consider the indirect communication mode. If e∗ is an informative D1 equilib-

rium, then the following holds.

(i) #(S+(σ∗)) = 2.

(ii) M+(σ∗, ϕ∗) =M .

(iii) ψ∗
y(yA | mE, ∅) ̸= ψ∗

y(yA | mO, ∅).

(iv) θ′ ≤ θSQ − b, where θ′ is a discontinuous point of σ∗.

(v) If b < 0, then |b| < 1− θSQ.

By Claim 1 and Lemmas 3-(i) and 6, without loss of generality, we hereafter assume that

informative D1 equilibrium e∗ has the following structure in the indirect communication
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mode: (a) σ∗(θ) = s1 if θ < θ′ and s2 otherwise, (b) ψ∗
y(yA | mE, ∅) > ψ∗

y(yA | mO, ∅), and

(c) ϕ∗(s1) = mO and ϕ∗(s2) = mE, where θ
′ ∈ (0, 1) and s1 < s2.

A.3.2 Proof of Proposition 2

Suppose that b ∈ (−(1− θSQ), 1− θSQ]. First, show that the following constitutes an infor-

mative D1 equilibrium:

σ∗(θ) =


0 if θ < θ∗(b),

1 + θ∗(b) otherwise,

ϕ∗(s) =


mO if s < 1 + θ∗(b),

mE otherwise,

ψ∗
r(m) = rN for any m,

ψ∗
y(o) =


yA if o = (mE, ∅),

yR if o = (mO, ∅),
(A.14)

µ∗(s) =



U([0, θ∗(b))) if s = 0,

U([θ∗(b), 1]) if s = 1 + θ∗(b),

D(θ∗(b)) if s ∈ (0, 1 + θ∗(b)),

D(1) otherwise,

ν∗y(o) =


U([0, θ∗(b))) if o = (mO, ∅),

U([θ∗(b), 1]) if o = (mE, ∅).

The optimality of ψ∗
y given ν∗y is as follows. Given o = (mO, ∅), Eν∗y (mO,∅)[θ] = θ∗(b)/2.

Note that θ∗(b)/2 = (θSQ − b)/2 if b ∈ (0, 1− θSQ], θSQ/2 if b ∈ [−bFB, 0), and θSQ − b− 1/2
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otherwise. Hence, because θ∗(b)/2 < θSQ for any b ∈ (−(1−θSQ), 1−θSQ], y = yR is optimal.

Given o = (mE, ∅), Eν∗y (mE ,∅)[θ] = (1 + θ∗(b))/2. Note that (1 + θ∗(b))/2 = (1 + θSQ − b)/2

if b ∈ (0, 1 − θSQ], (1 + θSQ)/2 if b ∈ [−bFB, 0), and θSQ − b otherwise. Hence, because

(1 + θ∗(b))/2 > θSQ for any b ∈ (−(1− θSQ), 1− θSQ], y = yA is optimal.

The optimality of ϕ∗ given µ∗ and ψ∗
y is as follows. Given s = 0, Eµ∗(0)[θ+b] = θ∗(b)/2+b <

θSQ holds for any b ∈ (−(1 − θSQ), 1 − θSQ], implying that m = mO is optimal. Given

s = 1+θ∗(b), Eµ∗(1+θ∗(b))[θ+b] = (1+θ∗(b))/2+b ≥ θSQ holds for any b ∈ (−(1−θSQ), 1−θSQ],

implying that m = mE is optimal. Given s ∈ (0, 1 + θ∗(b)), Eµ∗(s)[θ + b] = θ∗(b) + b ≤ θSQ

holds for any b ∈ (−(1−θSQ), 1−θSQ], implying thatm = mO is optimal. Given s > 1+θ∗(b),

Eµ∗(s)[θ + b] = 1 + b > θSQ holds for any b ∈ (−(1 − θSQ), 1 − θSQ], implying that m = mE

is optimal.

The optimality of σ∗ given ϕ∗ and ψ∗
y is as follows. First, show that any type never

mimics the other types. Fix θ ∈ [0, θ∗(b)), arbitrarily, implying that U∗(θ) = 0. By Lemma

3-(iv), U∗(θ∗(b)) = 0 holds. Hence, if type θ deviates to signal s = 1 + θ∗(b), then U∗(θ, 1 +

θ∗(b)) < U∗(θ∗(b), 1 + θ∗(b)) = U∗(θ∗(b)) = 0 = U∗(θ). Similarly, if θ ∈ [θ∗(b), 1], then

U∗(θ) ≥ U∗(θ∗(b), 1 + θ∗(b)) = 0 = U∗(θ, 0). That is, any type has no incentive to mimic

the other types. Next, show that any type never deviates to off-the-equilibrium-path signals.

Fix θ ∈ [0, 1], arbitrarily. If he deviates to signal s ∈ (0, 1 + θ∗(b)), then action y = yR is

induced, which means that U∗(θ, s) < 0 ≤ U∗(θ). If he deviates to signal s > 1+ θ∗(b), then

action y = yA is induced, which means that U∗(θ, s) < U∗(θ, 1 + θ∗(b)) ≤ U∗(θ). We then

conclude that σ∗ is optimal.

Because it is obvious that µ∗ and ν∗y satisfy conditions (iv), (v), (vi) of the definition

of PBE, we say that the above constitutes a PBE. Furthermore, Lemma 1 assures that µ∗
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satisfies the D1 criterion, implying that e∗ is an informative D1 equilibrium.

Next, we show that e∗ is the no-investigation equilibrium. It is obvious for b ∈ [−bFB, 0)

because θ∗(b) = θSQ. For b ∈ (0, 1− θSQ], if e
∗ is not the no-investigation equilibrium, then

there exists another informative D1 equilibrium on which the agent’s strategy is discontinuous

at θ′ > θSQ − b. However, it is impossible by Lemma 6-(iv). Note that for b ∈ (−(1 −

θSQ),−bFB), θ
∗(b) > θSQ and E[θ | θ ≥ θ∗(b)] = θSQ − b hold. Hence, if e∗ is not the no-

investigation equilibrium, then there exists another informative D1 equilibrium e′, on which

(i) properties (a), (b), and (c) mentioned above are satisfied, and (ii) θ′ < θ∗(b). Because

E[θ | θ ≥ θ∗(b)] = θSQ − b, E[θ | θ ≥ θ′] < θSQ − b must hold. However, it implies that

ϕ′(s1) = ϕ′(s2) = mO, which is a contradiction to Lemma 6-(ii). Therefore, e∗ should be the

no-investigation equilibrium.

Finally, we show that there exists no informative D1 equilibrium when b /∈ (−(1 −

θSQ), 1 − θSQ]. Suppose, in contrast, that there exists an informative D1 equilibrium e′

satisfying properties (a) to (c) mentioned above in the parameter range. Note that for

b ≤ −(1 − θSQ), we have |b| ≥ 1 − θSQ, which is a contradiction to Lemma 6-(v). Hence,

b > 1 − θSQ should hold. By Lemma 6-(iv), we should have θ′ ≤ θSQ − b. However,

Eν′y(mE ,∅)[θ] = E[θ | θ ≥ θ′] ≤ E[θ | θ ≥ θSQ − b] < E[θ | θ ≥ 2θSQ − 1] = θSQ, implying

that ψ′
y(mE, ∅) = yR, which is a contradiction to property (b). Therefore, there never exists

an informative D1 equilibrium when b /∈ (−(1 − θSQ), 1 − θSQ]. Thus, an uninformative

equilibrium is optimal in this parameter range. ■
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A.4 Proof of Corollary 1

The proof for θSQ > 1/2 is identical to that of Proposition 6-(i) mentioned below. We can

show the statement for θSQ < 1/2 by using a similar argument.42 ■

A.5 Proof of Proposition 3

(i) (Sufficiency) We show that the following is a partial-investigation equilibrium under the

assumed parameter range:

σ∗(θ) =


0 if θ ∈ [0, θ+),

s1 if θ ∈ [θ+, θSQ),

s2 otherwise,

ϕ∗(s) =


mE if s ≥ s1,

mO otherwise,

ψ∗
r(rI | m) =


ψ+ if m = mE,

0 otherwise,

(A.15)

ψ∗
y(o) =


yA if o = (mE, ∅) or o = (mE, s) with s ≥ s2,

yR otherwise,

42See Appendix B.9 for the detail.
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µ∗(s) =



U([0, θ+)) if s = 0,

U([θ+, θSQ]) if s = s1,

U([θSQ, 1]) if s = s2,

D(θ+) if s ∈ (0, s1),

D(θSQ) if s ∈ (s1, s2),

D(1) otherwise,

ν∗r (s | m) =



1 if m = mO and s = 0,

(θSQ − θ+)/(1− θ+) if m = mE and s = s1,

(1− θSQ)/(1− θ+) if m = mE and s = s2,

0 otherwise,

ν∗y(o) =


U([0, θ+)) if o = (mO, ∅),

U([θ+, 1]) if o = (mE, ∅),

µ∗(s) otherwise,

where ψ+ := (2b−δ+)/(2b−δ++2π), s1 := (1−ψ+)(1+θ+), and s2 := (1+θSQ)−(1−ψ+)δ+.

We have the following observations. First, 2b2/(1− θSQ + 2b) ≤ (1− θSQ)/4 is equivalent to

b ≤ (1 − θSQ)/2, which implies that δ+ ≤ 2b, and then ψ+ ∈ (0, 1) holds. Second, in this

parameter range, 0 < s1 < s2 holds. Finally, because θSQ > 1/2, as long as d ≤ (1− θSQ)/4,

θSQ ≤ 1− δ+ and θSQ > δ+ hold.

The optimality of ψ∗
y under ν∗y is as follows. It is obvious that ψ∗

y represents a best

response for any o ̸= (mE, ∅). Given o = (mE, ∅), the principal’s expected payoff from
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y = yA is (1 + θ+)/2. Hence, choosing action y = yA is a best response if and only if

(1 + θ+)/2 ≥ θSQ, which is equivalent to θSQ ≤ 1− δ+. As mentioned above, this inequality

holds in this parameter range.

The optimality of ψ∗
r under ν∗r and ψ∗

y is as follows. Given m = mO, certainly choosing

action r = rN is optimal. For m = mE, by construction of θ+, the principal is indifferent

between rI and rN . Hence, any randomization over these actions is optimal.

The optimality of ϕ∗ given µ∗, ψ∗
r , and ψ

∗
y is as follows. The manager’s expected payoffs

from m = mO and mE are θSQ and


ψ+(θSQ − π) + (1− ψ+)(Eµ∗(s)[θ + b]) if s < s2,

Eµ∗(s)[θ + b]− ψ+π otherwise,

(A.16)

respectively. Hence, ϕ∗ represents a best response if and only if the following holds:

θSQ ≥ ψ+(θSQ − π) + (1− ψ+)

(
1

2
θ+ + b

)
, (A.17)

θSQ ≥ ψ+(θSQ − π) + (1− ψ+)(θ+ + b), (A.18)

θSQ ≤ ψ+(θSQ − π) + (1− ψ+)

(
1

2
(θ+ + θSQ) + b

)
, (A.19)

θSQ ≤ ψ+(θSQ − π) + (1− ψ+)(θSQ + b), (A.20)

θSQ ≤ 1

2
(1 + θSQ) + b− ψ+π, (A.21)

θSQ ≤ 1 + b− ψ+π. (A.22)

Note that only (A.18) and (A.19) are potentially binding. With simple algebra, we can show

that (A.18) and (A.19) are satisfied when ψ+ = (2b− δ+)/(2b− δ+ + 2π).
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The optimality of σ∗ given ϕ∗, ψ∗
r , and ψ∗

y are as follows. Note that for any off-the-

equilibrium-path signal s ∈ S−(σ∗), the induced probability of approval is

G(s) =


G(0) if s ∈ (0, s1),

G(s1) if s ∈ (s1, s2),

G(s2) if s > s2,

(A.23)

which means that deviations to off-the-equilibrium-path signals are dominated by mimicking

the other types. Hence, it is sufficient to show that any type has no incentive to mimic the

other types. First, for type θ ∈ [0, θ+), U
∗(θ) = 0 holds. If he deviates to signal s = s1,

then U∗(θ, s1) < G(s1) − C(θ+, s1) = U∗(θ+) = 0, where the last equality comes from

Lemma 3-(iv). Similarly, if he deviates to signal s = s2, then U
∗(θ, s2) = G(s2)−C(θ, s2) <

G(s1) − C(θ, s1) = U∗(θ, s1) < U∗(θ), where the first inequality comes from the fact that

G(s2) − C(θSQ, s2) = G(s1) − C(θSQ, s1) and θ < θSQ. Next, for θ ∈ [θ+, θSQ), note that

U∗(θ) = G(s1) − C(θ, s1) ≥ G(s1) − C(θ+, s1) = 0 = U∗(θ, 0). If he deviates to signal

s = s2, then U
∗(θ, s2) = G(s2) − C(θ, s2) < G(s1) − C(θ, s1) = U∗(θ), where the inequality

comes from the fact that G(s2)− C(θSQ, s2) = G(s1)− C(θSQ, s1) and θ < θSQ. Finally, for

θ ∈ [θSQ, 1], note that U
∗(θ) = 1−C(θ, s2) > 1−C(θ, 1+θSQ) ≥ 0 = U∗(θ, 0). If he deviates

to signal s = s1, then U
∗(θ, s1) = G(s1) − C(θ, s1) ≤ G(s2) − C(θ, s2) = U∗(θ), where the

inequality comes from the fact that G(s2) − C(θSQ, s2) = G(s1) − C(θSQ, s1) and θ ≥ θSQ.

Therefore, we conclude that any type has no incentive to mimic the other types.

Because it is straightforward that µ∗, ν∗r , and ν
∗
y satisfy Conditions (v), (vi), and (vii),

e∗ is a PBE. Furthermore, Lemma 1 implies that e∗ is a D1 equilibrium; that is, e∗ is a
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partial-investigation equilibrium.

(Necessity) Suppose, in contrast, that there exists partial-investigation equilibrium e′

when either (a’) b < (1 − θSQ)/2 and d ≥ 2b2/(1 − θSQ + 2b) or (b’) b ≥ (1 − θSQ)/2 and

d > (1− θSQ)/4. By definition of a partial-investigation equilibrium, the first discontinuous

point of σ′ is also given by θ+. First, consider Scenario (a’). Note that d ≥ 2b2/(1− θSQ+2b)

is equivalent to δ+ ≥ 2b. Because e′ is a partial-investigation equilibrium, the manager

endorses the new project if he observes signal s = s′1, where S
+(σ′) := {s′0, s′1, s′2} with

s′0 < s′1 < s′2. That is, θSQ ≤ ψ′
+(θSQ − π) + (1 − ψ′

+)((θ+ + θSQ)/2 + b), or equivalently,

ψ′
+(δ+ − 2b − 2π) ≥ δ+ − 2b must hold, where ψ′

+ := ψ′
r(rI | mE). However, as long as

δ+ ≥ 2b, it is never satisfied, which is a contradiction. Next, consider scenario (b’). Because

d > (1 − θSQ)/4, θSQ > 1 − δ+ holds. However, it means that the principal chooses y = yR

under o = (mE, ∅), which is a contradiction.

(ii) The proof is essentially equivalent to that of Part (i). Hence, we omit the proof

except for the characterization of equilibrium strategies.43

σ∗(θ) =


0 if θ ∈ [0, θSQ),

s1 if θ ∈ [θSQ, θ−),

s2 if θ ∈ [θ−, 1],

ϕ∗(s) =


mO if s < s2,

mE otherwise,

(A.24)

43Because the characterization of equilibrium beliefs are straightforward, it is also omitted.
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ψ∗
r(rI | m) =


ψ− if m = mO,

0 otherwise,

ψ∗
y(o) =


yR if o = (mO, ∅) or (mO, s) with s < s1,

yA otherwise,

where δ− := d+
√
d2 + 2θSQd, θ− := θSQ+δ−, ψ− := (|b|−δ−)/(|b|−δ−+π), s1 := ψ−(1+θSQ),

and s2 := (1 + θSQ) + (1− ψ−)δ−. ■

A.6 Proof of Proposition 4

(i) Note that V F = (1 + θ2SQ)/2 − d, V N = (1 + θ2SQ − b2)/2, and V P = (1 + θ2SQ − δ2+)/2

whenever each equilibrium exists. First, we compare V F and V P when both the full- and the

partial-investigation equilibria exist, i.e., d < min{(1 − θSQ)
2/2, 2b2/(1 − θSQ + 2b)}. Note

that

V P ≥ V F ⇐⇒ d ≥ 1

2
δ2+

⇐⇒ d ≤ 1

2
θ2SQ, (A.25)

which is always satisfied in the parameter range because (1 − θSQ)
2/2 < θ2SQ/2 for θSQ >

1/2. That is, the full-investigation equilibrium is dominated by the partial-investigation

equilibrium whenever both equilibria exist.

Next, we compare V N and V F when the all but the partial-investigation equilibrium
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exist, i.e., b ≤ 1− θSQ and d ∈ [2b2/(1− θSQ + 2b), (1− θSQ)
2/2]. Note that

V N ≥ V F ⇐⇒ d ≥ 1

2
b2, (A.26)

which is always satisfied because 2b2/(1 − θSQ + 2b) > b2/2 holds in this parameter range.

Hence, we say that the full-investigation equilibrium is dominated by the no-investigation

equilibrium when the partial-investigation equilibrium does not exist.

Finally, we compare V P and V N whenever both equilibria exist, i.e., b ≤ θSQ and d <

min{(1− θSQ)/4, 2b
2/(1− θSQ + 2b)}. Note that

V P ≥ V N ⇐⇒ b2 ≥ δ2+

⇐⇒ d ≤ d+ =
b2

2(1− θSQ + b)
. (A.27)

That is, the no-investigation equilibrium dominates the partial-investigate equilibrium if and

only if d ∈ (d+,min{(1− θSQ)/4, 2b
2/(1− θSQ + 2b)}).44 Furthermore, in the other regions,

either exactly one of the three equilibria exists or only uninformative equilibria exist.

(ii) Because Proposition 2 implies that the no-investigation equilibrium implements the

first-best outcome when |b| ∈ (0, bFB], it is straightforward that the no-investigation equi-

librium is optimal in this scenario. Hence, hereafter, we restrict our attention to the sce-

nario of |b| > bFB. Note that V F = (1 + θ2SQ)/2 − d, V N = θSQ − 2|b|2 + 2(1 − θSQ)|b|,

and V P = (1 + θ2SQ − δ2−)/2 whenever each equilibrium exists. First, we compare V F

and V P whenever both the full- and the partial-investigation equilibria exist, i.e., d <

44As d+ < 2b2/(1− θSQ + 2b) and d+ ≤ (1− θSQ)/4 for b ≤ 1− θSQ hold, this interval is well defined.
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min{|b|2/[2(θSQ + |b|)], (1− θSQ)
2/2}. Note that

V P ≥ V F ⇐⇒ d ≥ 1

2
δ2−

⇐⇒ d ≤ 1

2
(1− θSQ)

2, (A.28)

which is always satisfied in this parameter range. That is, the partial-investigation equilib-

rium dominates the full-investigation equilibrium whenever both equilibria exist.

Next, we compare V N and V F when all but the partial-investigation equilibrium exist,

i.e., |b| ∈ (bFB, 1− θSQ] and d ∈ [|b|2/[2(θSQ + |b|)], (1− θSQ)
2/2]. Note that

V N ≥ V F ⇐⇒ d ≥ 1

2
(2|b| − 1 + θSQ)

2. (A.29)

Hence, it is sufficient to show that |b|2/[2(θSQ + |b|)] > (2|b| − 1 + θSQ)
2/2 holds in this pa-

rameter range to claim that the no-investigation equilibrium dominates the full-investigation

equilibrium. Specifically,

|b|2

2(θSQ + |b|)
>

1

2
(2|b| − 1 + θSQ)

2 ⇐⇒ 4|b|2 + (4θSQ − 1)|b| − θSQ(1− θSQ) > 0

⇐⇒ |b| > 1

8

(
1− 4θSQ +

√
8θSQ + 1

)
, (A.30)

which always holds because |b| > bFB > (1− 4θSQ +
√

8θSQ + 1)/8.

Finally, we compare V P and V N when both equilibria exist, i.e., |b| ∈ (bFB, 1− θSQ] and
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d < min{|b|2/[2(θSQ + |b|)], (1− θSQ)
2/2}. Note that

V P ≥ V N ⇐⇒ d ≤ d− =
(2|b| − 1 + θSQ)

2

2(2|b| − 1 + 2θSQ)
. (A.31)

That is, the no-investigation equilibrium dominates the partial-investigate equilibrium if and

only if d ∈ (d−,min{|b|2/[2(θSQ + |b|)], (1− θSQ)
2/2}).45 Furthermore, in the other regions,

either exactly one of the three equilibria exists or only uninformative equilibria exist. ■

A.7 Proof of Corollary 2

It is straightforward from Proposition 4. ■

A.8 Proof of Proposition 5

Suppose that b > 0 and θSQ > 1/2.46 By the hypothesis, we have V1 = θSQ, V2 =

max{V N , θSQ}, V3 = V F , and V4 = max{V N , V P}. Note that d ≥ d+ is equivalent to

b ≤ δ+. Hence,

ΛI =


((1− θSQ)

2 − b2)/2 if b ≤ 1− θSQ,

0 otherwise,

(A.32)

ΛC =


d− b2/2 if b ≤ δ+

d− δ2+/2 otherwise.

(A.33)

45As d− < |b|2/(θSQ + |b|) holds, this interval is well defined.
46By the similar argument used here, we can show the statement for the other cases. The detail is in

Appendix B.8.
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Because d < (1 − θSQ)
2/2 < (1 − θSQ)/4 implies that δ+ < 1− θSQ, there are the following

three cases. First, suppose that 0 < b ≤ δ+. Note that ΛI − ΛC = (1 − θSQ)
2/2 − d > 0,

where the inequality comes from the hypothesis. Second, suppose that δ+ < b ≤ 1 − θSQ.

Let λ(b) := ΛI −ΛC = ((1− θSQ)2− b2)/2−d+ δ2+/2. Because λ(δ+) = (1− θSQ)2/2−d > 0,

λ(θSQ) = −d + δ2+/2 < 0, and λ′(b) = −b < 0, the intermediate value theorem implies that

there exists β∗(θSQ, b, d) ∈ (δ+, θSQ) such that ΛI ≥ ΛC if and only if b ≤ β∗(θSQ, b, d).
47

Finally, suppose that b > 1− θSQ. Note that ΛI − ΛC = −d+ δ2+/2 < 0. ■

A.9 Proof of Corollary 3

It is straightforward from Proposition 5. ■

A.10 Proof of Proposition 6

(i) Suppose that d > (1− θSQ)/4. Note that a partial-investigation equilibrium never exists

irrelevant to the direction of the bias. Define ζ(b, θSQ) := |θ∗(b)− θSQ|, implying that

ζ(b, θSQ) =



b if 0 < b ≤ 1− θSQ,

0 if − bFB ≤ b < 0,

2|b| − (1− θSQ) if − (1− θSQ) ≤ b < −bFB,

1− θSQ otherwise.

(A.34)

By simple algebra, we immediately obtain that ζ(|b|, θSQ) ≥ ζ(−|b|, θSQ) for any b ̸= 0.48

(ii) Suppose that d ≤ (1 − θSQ)/4. Define ζ(b, d, θSQ) := |θ′ − θSQ|, where θ′ is the

47Specifically, β∗(θSQ, b, d) =
√
(1− θSQ)2 + δ2+ − 2d.

48ζ(b, d) is represented as in Figure 8.
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threshold of the optimal equilibrium, and b− := (1 − θSQ + δ−)/2. Then, we have the

following representation:

ζ(b, d, θSQ) =



b if 0 < b ≤ δ+,

δ+ if b > δ+,

0 if − bFB ≤ b < 0,

2|b| − (1− θSQ) if − b− ≤ b < −bFB,

δ− otherwise.

(A.35)

To complete the proof, we show the following lemma.

Lemma 7 Suppose that d ≤ (1− θSQ)/4 and θSQ > 1/2.

(i) b− > δ+.

(ii) There exists a unique |b′| ∈ [δ+, b−) such that ζ(|b′|, d, θSQ) = ζ(−|b′|, d, θSQ).

Proof of Lemma 7. (i) Note that δ− > δ+ holds because θSQ > 1/2. Hence,

b− − δ+ >
1

2
(1− θSQ + δ+)− δ+ =

1

2
(1− θSQ − δ+) ≥ 0, (A.36)

where the first and the last inequalities comes from the facts that δ− > δ+ and 1−θSQ ≥ δ+,

respectively.49

(ii) Define |b′| by ζ(|b′|, d, θSQ) = ζ(−|b′|, d, θSQ) and suppose its existence. First, sup-

pose, in contrast, that |b′| ∈ (0, bFB] ∪ [b−,∞). If |b′| ∈ (0, bFB], then ζ(−|b′|, d, θSQ) =

0 < ζ(|b′|, d, θSQ) must hold, which is a contradiction. Likewise, if |b′| ∈ [b−,∞), then

49Note that δ+ ≤ 1− θSQ is equivalent to d ≤ (1− θSQ)/4.
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ζ(|b′|, d, θSQ) = δ+ < ζ(−|b′|, d, θSQ) = δ− because of θSQ > 1/2, which is a contradiction.

Hence, |b′| ∈ (bFB, b−) should hold, implying that ζ(−|b′|, d, θSQ) = 2|b′| − (1 − θSQ). Sec-

ond, suppose, in contrast, that |b′| ∈ (0, δ+). Because ζ(|b′|, d, θSQ) = |b′|, ζ(|b′|, d, θSQ) =

ζ(−|b′|, d, θSQ) implies that |b′| = 1− θSQ. However, because d ≤ (1− θSQ)/4, δ+ ≤ 1− θSQ

holds, which is a contradiction to |b′| < δ+. Therefore, |b′| ∈ [δ+, b−) must hold. Finally, we

guarantee the existence of |b′| in this region. Define ξ(|b|) := ζ(−|b|, d, θSQ)− ζ(|b|, d, θSQ) =

2|b| − (1− θSQ)− δ+. Because ξ(δ+) = δ+− (1− θSQ) ≤ 0 < ξ(b−) = δ−− δ+ and ξ′(|b|) > 0,

the intermediate value theorem assures that there exists a unique |b′| ∈ [δ+, b−) such that

ξ(|b′|) = 0. Specifically, |b′| = (1− θSQ + δ+)/2. □

Lemma 7 immediately implies the statement.50 ■
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B Supplementary Materials (for Online Appendix)

This appendix provides the omitted proofs of Appendix A and supplementary results. For

any s ∈ S, let Θ(s) := { θ ∈ Θ | σ∗(θ) = s } represent the set of types who send signal s

under equilibrium strategy σ∗. Likewise, for any m, let S(m) := { s ∈ S+(σ∗) | ϕ∗(s) = m }

represent the set of on-the-equilibrium-path signals inducing message m under equilibrium

strategy ϕ∗.

B.1 Proof of Lemma 2

Suppose that θSQ < 1/2. We then show that the following is a D1 equilibrium:

σ∗(θ) = 0 for any θ,

ϕ∗(s) = mE for any s,

ψ∗
r(m) = rN for any m,

ψ∗
y(o) = yA for any o, (B.1)

µ∗(s) =


U([0, 1]) if s = 0,

D(1) if s > 0,

ν∗r (m) = D(0) for any m,

ν∗y(o) =


U([0, 1]) if o = (m, ∅) or (m, 0) for any m,

D(1) otherwise.

Because θSQ < 1/2, it is obvious that ψ∗
y is optimal given ν∗y . Given ν∗r , ν

∗
y and ψ∗

y , the

principal’s expected payoffs from r = rI and rN are 1/2−d and 1/2, respectively. Hence, we
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say that ψ∗
r is optimal. Because the principal’s behaviors are irrelevant to message m given

ψ∗
r and ψ∗

y , ϕ
∗ is obviously optimal. Note that U∗(θ) = 1 for any θ. If the agent with type θ

deviates to signal s′ > 0, then this deviation is not recognized by the principal given ϕ∗ and

ψ∗
r . It means that U∗(θ, s′) < U∗(θ), implying that σ∗ is optimal. Finally, it is obvious that

µ∗, ν∗r , and ν
∗
y satisfy Conditions (v), (vi), and (vii) of the definition of PBE. Therefore, we

say that e∗ is a PBE. Furthermore, Lemma 1 implies that e∗ is a D1 equilibrium. We can

guarantee the existence of an uninformative D1 equilibrium for θSQ > 1/2 by using a similar

argument. ■

B.2 Proof of Claim 1

Suppose, in contrast, that there exist PBE e∗ and s, s′ ∈ S+(σ∗) such that s < s′ and

G(s) ≥ G(s′). Fix θ ∈ Θ(s′), arbitrarily. However,

U∗(θ) = G(s′)− C(θ, s′)

< G(s)− C(θ, s) = U∗(θ, s), (B.2)

which is a contradiction to that σ∗(θ) = s′. Therefore, G(s) < G(s′) must hold. ■
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B.3 Proof of Lemma 3

B.3.1 Part (i)

Suppose, in contrast, that there exists a PBE e∗ such that σ∗(θ′) < σ∗(θ) for some θ, θ′ ∈ Θ

with θ < θ′. Because σ∗ is an equilibrium strategy, the following IC conditions should hold:

U∗(θ) ≥ U∗(θ, σ∗(θ′)) ⇐⇒ G(σ∗(θ))−G(σ∗(θ′)) ≥ C(θ, σ∗(θ))− C(θ, σ∗(θ′)); (B.3)

U∗(θ′) ≥ U∗(θ′, σ∗(θ)) ⇐⇒ C(θ′, σ∗(θ))− C(θ′, σ∗(θ′)) ≥ G(σ∗(θ))−G(σ∗(θ′)). (B.4)

Because Csθ < 0, θ < θ′, and σ∗(θ′) < σ∗(θ), we have

C(θ, σ∗(θ))− C(θ, σ∗(θ′)) > C(θ′, σ∗(θ))− C(θ′, σ∗(θ′)). (B.5)

However, (B.3), (B.4), and (B.5) imply that

C(θ, σ∗(θ))− C(θ, σ∗(θ′)) > G(σ∗(θ))−G(σ∗(θ′))

≥ C(θ, σ∗(θ))− C(θ, σ∗(θ′)), (B.6)

which is a contradiction. Therefore, σ∗ must be nondecreasing in θ. ■

B.3.2 Part (ii)

It is straightforward from Lemma 3-(i) and the Lebesgue Theorem. ■
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B.3.3 Auxiliary claims for Part (iii)

To show the second part, it is useful to show the following claims.

Claim 2 For any PBE e∗, if there exists s ∈ S+(σ∗) such that ψ∗
y(yA | m, s) ∈ (0, 1) for any

m ∈M , then ψ∗
y(yA | m, s′) /∈ (0, 1) holds for any s′ ∈ S+(σ∗) with s′ ̸= s and m ∈M .

Proof of Claim 2. Suppose that there exists s ∈ S+(σ∗) such that ψ∗
y(yA | m, s) ∈ (0, 1) for

any m ∈ M . It means that the principal is indifferent between yA and yR given signal s,

implying that E[θ | θ ∈ Θ(s)] = θSQ. By Lemma 3-(i), Θ(s′) should be an interval for any

s′ ∈ S+(σ∗). Hence, θSQ ∈ Θ(s) and θSQ /∈ Θ(s′) for any s′ ∈ S+(σ∗) with s′ ̸= s must hold.

Because Θ(s′) is an interval and θSQ /∈ Θ(s′), we have E[θ | θ ∈ Θ(s′)] ̸= θSQ, which implies

that ψ∗
y(yA | m, s′) /∈ (0, 1) holds for any m ∈M . ■

Claim 3 For any PBE e∗ and m ∈M+(σ∗, ϕ∗), if there exist s, s′ ∈ S(m) with s < s′, then

(i) ψ∗
r(rI | m) > 0 and (ii) ψ∗

y(yA | m, s) < ψ∗
y(yA | m, s′) hold.

Proof of Claim 3. Suppose, in contrast, that there exist PBE e∗, on-the-equilibrium-path

message m ∈M+(σ∗, ϕ∗), and on-the-equilibrium-path signals s, s′ ∈ S(m) with s < s′ such

that either (i) ψ∗
r(rI | m) = 0 or (ii) ψ∗

y(yA | m, s) ≥ ψ∗
y(yA | m, s′) holds. Fix θ ∈ Θ(s′),

arbitrarily. First, consider case (i). Note that

U∗(θ) = ψ∗
y(yA | m, ∅)− C(θ, s′)

< ψ∗
y(yA | m, ∅)− C(θ, s) (B.7)

= U∗(θ, s).
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However, it means that type θ has an incentive to deviate to signal s, which is a contradiction.

That is, ψ∗
r(rI | m) > 0 must hold. Next, consider case (ii). Because of Lemma 3-(i),

Eν∗y (m,s)[θ] < Eν∗y (m,s′)[θ] holds. Hence, ψ∗
y(yA | m, s) ≤ ψ∗

y(yA | m, s′) holds, implying that

ψ∗
y(yA | m, s) = ψ∗

y(yA | m, s). However, it implies that G(s) = G(s′), which is a contradiction

to Claim 1. Therefore, ψ∗
y(yA | m, s) < ψ∗

y(yA | m, s′) must hold. ■

B.3.4 Part (iii)

Fix PBE e∗, arbitrarily. By Lemma 3-(i) and (ii), σ∗ is either constant or strictly in-

creasing whenever differentiable. Suppose, in contrast, that there exists subset Θ′ ⊆ Θ

on which σ∗ is differentiable and strictly increasing. Hence, there exists on-the-equilibrium-

path message m ∈ M+(σ∗, ϕ∗) such that #(S(m)) > 4. Without loss of generality, as-

sume that s1, s2, s3, s4 ∈ S(m) with s1 < s2 < s3 < s4. By Claim 3-(ii), we have

ψ∗
y(yA | m, s1) < ψ∗

y(yA | m, s2) < ψ∗
y(yA | m, s3) < ψ∗

y(yA | m, s4) must hold. To hold

this order, it is necessary that ψ∗
y(yA | m, s2) ∈ (0, 1) and ψ∗

y(yA | m, s3) ∈ (0, 1). However,

by Claim 2, it is impossible, which is a contradiction. Therefore, σ∗ should be constant

whenever differentiable. ■

B.3.5 Auxiliary claims for Part (iv)

Claim 4 For any PBE e∗, G(σ∗) is continuous almost everywhere.

Proof of Claim 4. By Lemma 3-(ii) and (iii), σ∗ is differentiable almost everywhere and

constant whenever differentiable. Fix subset Θ′ ⊆ Θ on which σ∗ is constant, arbitrarily.

Because σ∗(θ) = σ∗(θ′) holds for any θ, θ′ ∈ Θ′, G(σ∗(θ)) = G(σ∗(θ′)) holds, implying that

G(σ∗) is continuous on Θ′. ■
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B.3.6 Part (iv)

Suppose, in contrast, that there exists θ′ ∈ Θ such that U∗(θ′) ̸= limθ↑θ′ U
∗(θ). Because

of Lemma 3-(i), Claim 4 and the continuity of C, there exists an open interval (θ, θ′) on

which U∗ is continuous. Hence, there exists θ′′ ∈ (θ, θ′) such that θ′′ is so close to θ′

that |U∗(θ′′) − limθ↑θ′ U
∗(θ)| is sufficiently close to 0. Suppose, in contrast, that U∗(θ′) <

limθ↑θ′ U
∗(θ). However, it implies that U∗(θ′) < U∗(θ′′) < G(σ∗(θ′′)) − C(θ′, σ∗(θ′′)) =

U∗(θ′, σ∗(θ′′)), which is a contradiction. Hence, U∗(θ′) > limθ↑θ′ U
∗(θ) should hold. Because

θ′′ is sufficiently close to θ′, it implies that U∗(θ′) = G(σ∗(θ′))− C(θ′, σ∗(θ′)) > G(σ∗(θ′))−

C(θ′′, σ∗(θ′)) = U∗(θ′′, σ∗(θ′)) > U∗(θ′′). However, it means that type θ′′ has an incentive to

mimic type θ′, which is a contradiction. Therefore, U∗(θ′) = limθ↑θ′ U
∗(θ) holds. Because

U∗(θ′) = limθ↓θ′ U
∗(θ) also should hold by the similar argument, U∗ must be continuous. ■

B.4 Proof of Lemma 5

(i) By Lemma 3-(i), (ii) and (iii), σ∗ should be a step function. Furthermore, by using the

same argument used in the proof of Lemma 3-(iii), we say that #(S+(σ∗)) ≤ 3. Now, suppose,

in contrast, that there exists D1 equilibrium e∗ such that S+(σ∗) = S(mE) = {s1, s2, s3}

with s1 < s2 < s3. Claims 2 and 3 imply that ψ∗
r(rI | mE) > 0 and ψ∗

y(yA | mE, s1) = 0 <

ψ∗
y(yA | mE, s2) < ψ∗

y(yA | mE, s3) = 1. That is, Eν∗y (mE ,s2)[θ] = θSQ must hold. Furthermore,

because σ∗ is nondecreasing by Lemma 3-(i), we assume that Θ(s1) = [0, θ1), Θ(s2) = [θ1, θ2),

and Θ(s3) = [θ2, 1] without loss of generality. Because of Eν∗y (mE ,s2)[θ] = θSQ, θSQ ∈ (θ1, θ2)

holds. Note that the equilibrium utility of the agent with θ = θ2 is U∗(θ2) = ψ∗
r(rI |

mE) +ψ∗
r(rN | mE)ψ

∗
y(yA | mE, ∅)−C(θ2, s3). Now, consider a deviation of type θ2 to signal
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s = s2 + ε, where ε > 0 is sufficiently small. By Lemma 1, the D1 criterion requires that

µ∗(θ2 | s2 + ε) = 1, implying that ψ∗
y(yA | mE, s2 + ε) = 1 because of θ2 > θSQ. However, it

means that

U∗(θ2, s2 + ε) = ψ∗
r(rI | mE) + ψ∗

r(rN | mE)ψ
∗
y(yA | mE, ∅)− C(θ2, s2 + ε)

> U∗(θ2), (B.8)

which is a contradiction. Therefore, #(S+(σ∗)) = 2 must hold.

(ii) By Part (i), σ∗ should be a step function with at most one discontinuous point. Hence,

θ∗ is well defined. Suppose, in contrast, that θ∗ > θSQ. By using a similar argument that

type θ2 has an incentive to deviate in the proof of Part (i), we can derive a contradiction.

Therefore, θ∗ ≤ θSQ must hold.

(iii) The statement is immediately derived from Claim 3-(i). ■

B.5 Proposition 2

B.5.1 Proof of Lemma 6

(i) It is sufficient to show that #(S+(σ∗)) ̸= 3 because #(S+(σ∗)) ≤ 3 is guaranteed by

the similar argument used in Section B.3.4. Suppose, in contrast, that #(S+(σ∗)) = 3,

implying that there exists message m ∈M+(σ∗, ϕ∗) such that S(m) = {s1, s2} with s1 < s2.

However, by Claim 3-(i), ψ∗
r(rI | m) > 0 must hold, which is a contradiction. Therefore,

#(S+(σ∗)) = 2 must hold.

(ii) Suppose, in contrast, that M+(σ∗, ϕ∗) = {mE}. Because #(S+(σ∗)) = 2 by Part (i),

74



there exist signals s1, s2 ∈ S(mE) with s1 < s2. However, it implies that ψ∗
r(rI | mE) > 0

must hold by Claim 3-(i), which is a contradiction. Therefore, M+(σ∗, ϕ∗) =M must hold.

(iii) Suppose, in contrast, that ψ∗
y(yA | mE, ∅) = ψ∗

y(yA | mO, ∅). By Part (i), there exist

signals s1, s2 ∈ S+(σ∗) with s1 < s2. Because the principal commits to ψ∗
r(rI | m) = 0 for any

m, G(s1) = G(s2). However, Claim 1 requires that G(s1) < G(s2), which is a contradiction.

Therefore, ψ∗
y(yA | mE, ∅) ̸= ψ∗

y(yA | mO, ∅) must hold.

(iv) By Part (i), S+(σ∗) = {s1, s2} with s1 < s2 and σ∗ has a unique discontinuous

point θ′. Suppose, in contrast, that θ′ > θSQ − b. By Lemma 3-(i) and (iv), U∗(θ′) =

U∗(θ′, s2) holds. Because of Part (iii), without loss of generality, we assume that ψ∗
y(yA |

mE, ∅) > ψ∗
y(yA | mO, ∅). Furthermore, Claim 1 and Part (ii) imply that ϕ∗(s2) = mE. That

is, U∗(θ′, s2) = ψ∗
y(yA | mE, ∅) − C(θ′, s2). Now, suppose that type θ′ deviates to signal

s′ ∈ (s1, s2). By Lemma 1, the D1 criterion requires that µ∗(s′) = D(θ′), implying that

ϕ∗(s′) = mE because θ′ + b > θSQ. However, it means that

U∗(θ′, s′) = ψ∗
y(yA | mE, ∅)− C(θ′, s′)

> ψ∗
y(yA | mE, ∅)− C(θ′, s2) = U∗(θ′), (B.9)

which is a contradiction. Therefore, θ′ ≤ θSQ − b must hold.

(v) Suppose, in contrast, that b < 0 but |b| ≥ 1 − θSQ, i.e., 1 ≤ θSQ − b. By Lemma

3-(i), Parts (i), (ii), and (iii), without loss of generality, we assume that (a) σ∗(θ) = s1 if

θ < θ′ and s2 otherwise, and (b) ψ∗
y(yA | mE, ∅) > ψ∗

y(yA | mO, ∅), where s1 < s2. Note that

Eµ∗(s1)[θ + b] = θ′/2 + b. Because 1 ≤ θSQ − b and θ′ < 1, θSQ − (θ′/2 + b) ≥ 1 − θ′/2 > 0,

implying that ϕ∗(s1) = mO. Because mE ∈ M+(σ∗, ϕ∗), ϕ∗(s2) = mE must hold, implying
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that Eµ∗(s2)[θ+b] ≥ θSQ, or still (1+θ
′)/2 ≥ θSQ−b. However, it implies that 1 > (1+θ′)/2 ≥

θSQ − b ≥ 1, which is a contradiction. Therefore, |b| < 1− θSQ must hold. ■

B.5.2 The statement for θSQ < 1/2

Proposition 7 Consider the indirect communication mode with θSQ < 1/2. If b ∈ [−1/2, θSQ),

then the no-investigation equilibrium is optimal, where

θ∗(b) =


θSQ − b if b ∈ (0, θSQ),

θSQ if b ∈ [−bFB, 0),

2θSQ − 2b− 1 if b ∈ [−1/2,−bFB.)

(B.10)

Otherwise, an uninformative equilibrium is optimal.

Proof. Because the proof is essentially equivalent to that of Proposition 2, it is omitted. ■

B.6 Proposition 3 for θSQ < 1/2

Proposition 8 Consider the hybrid communication mode with θSQ < 1/2.

(i) Suppose that b > 0. Then, a partial-investigation equilibrium exists if and only if either

one of the following holds: (a) b ≤ θSQ/2 and d < 2b2/(1− θSQ +2b) or (b) b > θSQ/2

and d < θ2SQ/2.

(ii) Suppose that b < 0. Then, a partial-investigation equilibrium exists if and only if either

one of the following holds: (a) |b| ≤ θSQ and d < |b|2/[2(θSQ + |b|)] or (b) |b| > θSQ

and d ≤ θSQ/4.

Proof. Because the proof is essentially equivalent to that of Proposition 3, it is omitted. ■
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B.7 Proposition 4 for θSQ < 1/2

Proposition 9 Consider the hybrid communication mode with θSQ < 1/2.

(i) Suppose that b > 0.

(a) If b ≤ θSQ and d ≥ d+, then the no-investigation equilibrium is optimal.

(b) If either [b < θSQ and d < d+] or [b ≥ θSQ and d < θ2SQ/2], then a partial-

investigation equilibrium is optimal.

(c) Otherwise, an uninformative equilibrium is optimal.

(ii) Suppose that b < 0.

(a) If either [|b| ≤ bFB] or [|b| ∈ (bFB, 1/2] and d > d−], then the no-investigation

equilibrium is optimal.

(b) If either [|b| ∈ (bFB, 1/2] and d ≤ d−] or [|b| > 1/2 and d ≤ θSQ/4], then a

partial-investigation equilibrium is optimal.

(c) Otherwise, an uninformative equilibrium is optimal.

Proof. Because the proof is essentially equivalent to that of Proposition 4, it is omitted. ■

B.8 Proof of Proposition 5 except for b > 0 and θSQ > 1/2

Because the proofs of the other cases are identical to that mentioned in the body of the

paper except for the characterization of ΛI − ΛC and β∗(θSQ, b, d), we only provide the

characterization.
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(i) b > 0 and θSQ < 1/2.

ΛI =


(θ2SQ − b2)/2 if b ≤ θSQ,

0 otherwise,

ΛC =


d− b2/2 if b ≤ δ+,

d− δ2+/2 otherwise,

(B.11)

β∗(θSQ, b, d) =
√
θ2SQ + δ2+ − 2d.

(ii) b < 0 and θSQ < 1/2.

ΛI =


θ2SQ/2 if |b| ≤ bFB,

(1− 2|b|)(2|b| − 1 + 2θSQ)/2 if bFB < |b| ≤ 1/2,

0 otherwise,

ΛC =


d if |b| ≤ bFB,

d− (2|b| − 1 + θSQ)
2/2 if bFB < |b| ≤ b−,

d− δ2−/2 otherwise,

(B.12)

β∗(θSQ, b, d) =
1

2

(
1− θSQ +

√
θ2SQ + δ2− − 2d

)
,

where b− := (1− θSQ + δ−)/2, and |b| ≤ b− is equivalent to d ≤ d−, or still V
N ≤ V P .
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(iii) b < 0 and θSQ > 1/2.

ΛI =


(1− θSQ)

2/2 if |b| ≤ bFB,

2|b|(1− θSQ − |b|) if bFB < |b| ≤ 1− θSQ,

0 otherwise,

ΛC =


d if |b| ≤ bFB,

d− (2|b| − 1 + θSQ)
2/2 if bFB < |b| ≤ b−,

d− δ2−/2 otherwise,

(B.13)

β∗(θSQ, b, d) =
1

2

(
1− θSQ +

√
(1− θSQ)2 + δ2− − 2d

)
.

■

B.9 Proposition 6 for θSQ < 1/2

Proposition 10 Consider the hybrid communication mode with θSQ < 1/2. Then, the anti-

change-biased manager is always better for the principal.

Proof. There are the following two cases: (i) d > θSQ/4, where a partial-investigation equilib-

rium never exists, and (ii) d ≤ θSQ/4, where there exists a partial-investigation equilibrium

at least for the anti-change-biased manager.
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Figure 10: Optimal Direction for d > θSQ/4 and θSQ < 1/2

First, consider Case (i). Define ζ(b, θSQ) := |θ∗(b)− θSQ|, implying that

ζ(b, θSQ) =



b if 0 < b ≤ θSQ,

0 if − bFB ≤ b < 0,

2|b| − (1− θSQ) if − 1/2 ≤ b < −bFB,

θSQ otherwise.

(B.14)

By simple algebra, we can show that ζ(|b|, θSQ) ≥ ζ(−|b|, θSQ) for any b ̸= 0, as denoted in

Figure 10.

Next, consider Case (ii). Define ζ(b, d, θSQ) := |θ′ − θSQ|, where θ′ is the threshold of the

optimal equilibrium. The characterization of ζ(b, d, θSQ) is also given by (A.35) in the body of

the paper. There are the following two subcases: (a) d < θ2SQ/2, where a partial-investigation

equilibrium exists irrelevant to the direction of bias, and (b) θ2SQ/2 ≤ d ≤ θSQ/4, where a

partial-investigation equilibrium exists only when bias is negative. Now, consider Subcase
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(a), and show that ζ(|b|, d, θSQ) ≥ ζ(−|b|, d, θSQ) for any b ̸= 0. Note that if |b| ∈ (0, bFB],

then ζ(−|b|, d, θSQ) = 0 < ζ(|b|, d, θSQ) holds. Similarly, if |b| ∈ (max{δ+, b−},∞), then

ζ(−|b|, d, θSQ) = δ− < ζ(|b|, d, θSQ) = δ+ holds because δ− < δ+ when θSQ < 1/2. Hence, it

remains to show the statement for |b| ∈ (bFB,max{δ+, b−}]. If δ+ < bFB, then max{δ+, b−} =

b−, implying that

ζ(|b|, d, θSQ)− ζ(−|b|, d, θSQ) = δ+ + (1− θSQ)− 2|b|

≥ δ+ + (1− θSQ)− 2b−

= δ+ − δ− (B.15)

> 0,

where the first and the last inequalities come from the facts that |b| ≤ b− and δ+ > δ− when

θSQ < 1/2, respectively. If δ+ > b− and |b| ∈ (bFB, b−], then we have

ζ(|b|, d, θSQ)− ζ(−|b|, d, θSQ) = (1− θSQ)− |b|

≥ (1− θSQ)− b−

=
1

2
(1− θSQ − δ−)

> 0, (B.16)

where the first and the second inequalities come from the facts that |b| ≤ b− and 1−θSQ > δ−

when d < θ2SQ/2 and θSQ < 1/2, respectively. Similarly, if δ+ > b− and |b| ∈ (b−, δ+], then
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Figure 11: Optimal Direction for d < θ2SQ/2 and θSQ < 1/2

we have

ζ(|b|, d, θSQ)− ζ(−|b|, d, θSQ) = |b| − δ−

> b− − δ−

=
1

2
(1− θSQ − δ−)

> 0, (B.17)

where the first and the second inequalities hold analogous to the above case. Finally, suppose

that bFB ≤ δ+ ≤ b−. If |b| ∈ (bFB, δ+], we can show the statement by the same argument

used in the case of δ+ > b− and |b| ∈ (δ+, b−]. Similarly, if |b| ∈ (δ+, b−], we can show the

statement by the same argument used in the case of δ+ < bFB. Thus, we conclude that

ζ(|b|, d, θSQ) ≥ ζ(−|b|, d, θSQ) for any b ̸= 0 in Case (a), as denoted in Figure 11.

Next consider Case (b). Note that ζ(|b|, d, θSQ) under Case (b) is weakly larger than that

82



under Case (a) while ζ(−|b|, d, θSQ) is identical to that of Case (a). Hence, the inequality

under Case (a) implies that the same inequality also holds under Case (b). As a result,

ζ(|b|, d, θSQ) ≥ ζ(−|b|, d, θSQ) holds for any b ̸= 0.51 ■

51The diagram of this scenario is similar to Figure 11.
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