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Abstract. The pattern decomposition method (PDM) is a type of spectral mixing analysis in which each pixel is expressed as 

the linear sum of fixed, standard spectral patterns for water, vegetation, and soil, with supplementary patterns included when 

necessary. For each sensor, these standard patterns are calculated from the same original reflectance spectra. The PDM 

framework can be applied to any optically sensed data. In this method, however, the normalization of standard spectral patterns 

depends on how many bands and which wavelengths the sensor observes. As a result, the obtained pattern decomposition 

coefficients may differ for each sensor, even when the same sample object is observed. This paper describes a modified PDM 

with a supplementary pattern; the developed sensor-independent method uses the same normalized spectral patterns for any 

sensor. Fixed multi-band (1,260 bands) spectra served as the universal standard spectral patterns. The resulting pattern 

decomposition coefficients showed sensor independence. That is, regardless of sensor, the three coefficients had nearly the 

same values for the same samples. The estimation errors for pattern decomposition coefficients depended on the sensor used. 

The estimation errors for Landsat/MSS and ALOS/AVNIR-2 were larger than those of Landsat/TM (ETM+), Terra/MODIS, 

and ADEOS-II/GLI. The latter three sensors had negligibly small errors. 

 

 

1.  Introduction 

Satellite remote sensing is important for land cover research and estimating global net primary production 

(NPP). Numerous satellite sensors collect measurements for land analysis. Recent satellite sensors, such as 

Terra/MODIS and ADEOS-II/GLI, provide hyper-multispectral data. However, analysis results depend on sensor 

performance and are especially affected by the number of bands and wavelengths observed. Consequently, it is 

difficult to compare analysis results obtained using data from different satellite sensors. 
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We sought to develop a sensor-independent analysis method. Sensor independence means that analysis results 

for the same sample should be the same or nearly the same, regardless of the sensor used. Most analysis methods 

are sensor dependent. For example, although the principal component transformation (PCT) method can be 

applied to data obtained from any type of optical sensor, the results differ depending on the sensor type, so PCT is a 

sensor-dependent method. 

The pattern decomposition method (PDM) uses multispectral data effectively (Fujiwara et al., 1996; 

Muramatsu et al., 2000; Daigo et al., 2003). The PDM is a type of spectral mixing analysis (Adams et al., 1995), 

which expresses the spectrum of each pixel as the linear sum of three fixed, standard spectral patterns (i.e., the 

patterns of water, vegetation, and soil). For each sensor, these standard patterns are calculated from the same original 

reflectance spectra. This framework can be used to apply the PDM to data obtained from any optical sensor. 

However, the resulting pattern decomposition coefficients may differ by sensor, even for the same sample object. 

Normalization methods account for these differences. The PDM has sensor-independent characteristics and can be 

made sensor-independent with a well-designed definition. Therefore, we developed a modified PDM for sensor-

independent analysis. This method, referred to as the universal PDM (UPDM), uses the same normalization 

method for all sensors. In this method, the standard patterns are extracted from ground-measured common spectra. 

The UPDM can be applied to any sensor, and the results obtained from various sensors are almost the same for the 

same sample. 

On average, 95.5% of land-cover spectral reflectance information can be transformed into the three 

decomposition coefficients and decomposed into the three standard patterns with about 4.2% error per degree of 

freedom (Daigo et al., 2003). However, some objects, such as yellow leaves, have slightly larger decomposition 

errors. Depending on the research purpose, supplementary standard patterns can be applied. For example, to study 

vegetation changes in more detail, an additional supplementary spectral pattern can be added to reproduce the 

spectral reflectance. In this study, a yellow-leaf pattern was used as a supplementary spectral pattern. 

To study sensor independence using the UPDM, we analyzed about 600 ground-measured samples, including 

green-leaf, yellow-leaf, dead-leaf, soil, water, and concrete samples etc.. We made simulated data of Landsat/MSS, 

ALOS/AVNIR-2, Landsat/ETM+, Terra/MODIS, and ADEOS-II/GLI sensors using ground-measured data, and 

compared the analyses results of these data. In this paper, we describe the UPDM and simulated results 

representing several sensors. 

 

2.  The pattern decomposition method 

2.1. Review of the conventional pattern decomposition method 

In the conventional PDM, the reflectance (or brightness) data for each observed pixel are decomposed into the 

standard spectral patterns of water, vegetation, and soil using the following formula (Daigo et al., 2003): 
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issivviwwi PCPCPCR ⋅+⋅+⋅→ ,                                 (1) 

where iR is the reflectance of band i measured on the ground (or by satellite sensor), Cw, Cv, and Cs are the 

respective decomposition coefficients, and iwP , ivP , and isP  are the normalized standard spectral patterns of 

water, vegetation, and soil, which relate to the properties of each sensor. The fitted reflectance value is given by 

issivviwwi PCPCPCR ⋅+⋅+⋅=' ,           (2) 

where the  residual of the band i reflectance is defined by 

.'iii RRr −=                 (3) 

The pattern decomposition coefficients obtained using equation (1) are evaluated using the least squares method. 

When the PDM is used for spectral mixing analysis, a non-negative constraint is put on the coefficients: 
0,0,0 ≥≥≥ svw CCC 　　                (4) 

The standard spectral patterns are normalized as 
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Here, N is the number of sensor bands used. If necessary for more detailed analysis, a supplementary standard 

spectral pattern can be added. 

According to equation (5), the standard patterns depend on the band wavelengths detected and the number of 

bands used, although the same continuous spectra serve as the standard spectra. As a result, the pattern 

decomposition coefficient values for the same object depend on the sensor (i.e., the values are sensor dependent). 

 

2.2. The universal pattern decomposition method 

2.2.1. The universal pattern decomposition method with three components 

In response to PDM shortcomings, we developed a universal PDM (UPDM). In the UPDM, we define each 

standard spectral pattern as a continuous spectral function from 350 to 2,500 nm. The other equations remain the 

same as in the conventional PDM. Instead of equation (5), however, standard pattern normalizations are defined as 

follows: 

∫∫ = λλλ ddPk )(   ),,( svwk = ,           (6) 

where the discrete band number i in equation (5) is changed into continuous wavelength λ, ∫ λd  refers to 

integration of the total wavelength range, and )(λkP  is defined as 
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where )(λkR  represents the spectral reflectance patterns of standard objects. The shapes and magnitudes of the 

standard patterns )(λkP  are fixed for all sensors. 

For each sensor band, we intercepted )(λkP  values. Thus, the standard patterns for each sensor are defined by 

∫
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where siλ  and eiλ  are the start and end wavelengths for band i, respectively, and ∫
ei

si

d
λ

λ
λ  is the wavelength width 

of band i. The decomposition coefficients Ck were obtained for each sensor by the least squares method using 

equation (1). In principle, nearly equal values should result for the same object; furthermore, coefficient precision is 

expected to improve as the number of bands increases. 

The remaining decomposition coefficient calculation procedures are the same as in the conventional PDM. 

However, the non-negative constraint put on coefficients in the conventional PDM is removed in the UPDM. The 

PDM can be explained using two analysis methods: spectral mixing analysis and multi-dimensional analysis. If we 

think of the PDM as multi-dimensional analysis, standard patterns are interpreted as an oblique coordinate system, 

and coefficients are thought of as the coordinates of a pixel’s reflectance. In this case, non-negative constraints are 

inappropriate. We think this interpretation is more general than traditional interpretations. If an application requires 

non-negative constraints, the UPDM is also compatible with the non-negative constraints. 

If we compute an integral of the entire band, we can obtain equation (9) from equation (1), as follows: 

 ∫∫∫∫ =++ λλλλλλλλ dRdPCdPCdPC ssvvww )()()()( .     (9) 

Considering equation (6), equation (9) can be transformed into 

∫
∫=++

λ

λλ

d

dR
CCC svw

)(
.             (10) 

In principle, nearly the same values should result from measurements of the same object, regardless of sensor type. 

The reduced 2χ is defined as follows: 
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where n refers to the total number of bands for a sensor, 3 is the number of coefficients, and )3( −n represents the 

degrees of freedom for a dataset of n bands. 

 

2.2.2. The Universal pattern decomposition method with four components 

As mentioned above, a supplementary yellow-leaf spectral pattern was used for detailed analysis of vegetation 

changes. Consequently, the general equation of universal PDM was changed to 

44 iissivviwwi PCPCPCPCR ⋅+⋅+⋅+⋅→ ,        (12) 

where 4C represents the supplementary coefficients of a yellow leaf, and 4iP is the supplementary standard pattern 

for i bands (i is the number of bands for the sensor), which is intercepted from )(4 λP . The yellow-leaf spectrum 

and three components were used to define )(4 λP  as follows: 
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where )(4 λr  is the residual yellow-leaf value relative to i bands: 

{ })()()()()( 44 λλλλλ ssvvww PCPCPCRr ++−= .                        (14) 

Here, )(4 λR is the measured value for the yellow-leaf sample, and )(4 λr is the residual value. For any sensor, Pi4 

values were calculated with equation (8). The reduced 2χ were calculated using 
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22 )4/()(χ ,                                                   (15) 

where n equals the number of bands. 

 

3.  Data used in this analysis 

3.1. Standard spectral patterns 

Consistent with the conventional PDM, we used the same water, vegetation, and soil standard spectral patterns. 

In the UPDM, however, we converted an uninterrupted spectral wavelength range from 350 to 2,500 nm, 

excluding regions of strong atmospheric absorption. Therefore, the total number of bands equaled 1,260. Sample 

data were measured outdoors under solar light or indoors under a halogen lamp with a Field Spec FR (Analytical 

Spectral Devices, Inc.) or MSR7000 (Opto Research Corp.) radio-spectrometer. Both radio-spectrometers give 

raw spectral values for every 1 nm in wavelength from 350 to 2,500 nm and have a spectral resolution from 3 to 10 
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nm. The samples used to define standard spectral patterns were the same as the reference (Daigo et al., 2003). Table 

3.1 shows the wavelength regions used to obtain the standard spectral patterns. The spectral region used had 

atmospheric transmittance greater than 80%. Figure 3.1 shows the wavelengths selected from the original standard 

reflectance values for water, vegetation, and soil. 

Table 3.1. Wavelength regions used in this analysis 

 

 

 

 

 

 

 
 

Figure 3.1. Wavelengths selected in this analysis. The figure shows the original measured reflectance values for the 

three standard patterns (water, vegetation, and soil). 

 

In this analysis, we selected a yellow-leaf sample to serve as the supplementary spectral pattern. Using a yellow 

leaf rectifies problems associated with the withered-vegetation pattern. Dead-leaf samples are remarkably similar to 

soil and are therefore not suitable as a supplementary spectral pattern. Figure 3.2 shows the new normalized 

standard spectral patterns of water (blue ×), vegetation (green ×), soil (red +), and the yellow-leaf supplement 

(purple □). 

 

No Wavelength/nm 

1 
2 
3 
4 
5 

371.0 ~  900.0 
 991.0 ~ 1100.0 
1191.0 ~ 1300.0 
1521.0 ~ 1750.0 
2081.0 ~ 2360.0 
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3.2. Sensors and sample data used for this analysis 

The sensors simulated in this analysis were MSS, ALOS, ETM+, MODIS, and GLI. The virtual sensors 

MODEL and CONTINUE were also used. Bands in which output signals from the actual sensor (i.e., MODIS & 

GLI) were saturated on land areas were removed. In the wavelength region above 2,000 nm, the ground-measured 

data was poor in quality. Therefore, these data were also removed. For each band of each sensor, average 

reflectance values were obtained from ground-measured data within the wavelength widths of each band. Table 3.2 

lists the bands used in this analysis. The model sensor CONTINUE has 92 bands with wavelengths ranging from 

371 to 1,750 nm (table 3.1) and a bandwidth of 10 nm. 

 

 
 
Figure 3.2. Normalized standard patterns of soil, water, vegetation, and the supplementary pattern. This figure shows the normalized 

values of the standard spectral patterns of water, vegetation, and soil given in figure 3.1; the supplementary standard pattern 

represents a yellow leaf. 

  



 
 
 
  

8 

 

Table 3.2. Spectral bands used in this analysis 

No MSS/nm ALOS/nm ETM+/nm MODIS/nm GLI/nm MODEL/nm 
1   
2   
3   
4   
5   
6   
7   
8   
9   

10   
11   
12   
13   

500.0 ~  600.0 
600.0 ~  700.0 
700.0 ~  800.0 

800.0 ~ 1,100.0 
    

420.0 ~ 500.0 
520.0 ~ 600.0 
610.0 ~ 690.0 
760.0 ~ 890.0 

450.0~  519.0 
520.0~  600.0 
630.0~  690.0 
760.0~  900.0 

1,550.0 ~ 1,750.0 
2,080.0~ 2,350.0 

     459.0 ~  479.0 
     545.0 ~  565.0 
  620.0 ~  670.0 
841.0 ~  876.0 

1,230.0 ~ 1,250.0 
1,628.0 ~ 1,652.0 
2,105.0~ 2,155.0 

 375.0 ~  385.0 
 455.0 ~  465.0 
 540.0 ~  550.0 
 673.0 ~  683.0 
 705.0 ~  715.0 
 759.0 ~  767.0 
 855.0 ~  875.0 

 1,040.0 ~1,060.0 
  1,230.0 ~1,250.0 
  1,540.0 ~1,740.0 
2,100.0~2,320.0 

  385.0 ~  425.0 
 455.0 ~  465.0 

   540.0 ~  550.0 
   673.0 ~  683.0 
705.0~  715.0 
759.0 ~  767.0 
855.0 ~  875.0 
991.0 ~ 1,010.0 

1,040.0 ~ 1,060.0 
1,200.0 ~ 1,250.0 
1,540.0 ~ 1,640.0 
1,650.0 ~ 1,740.0 
2,100.0 ~ 2,320.0 
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4. Results of the universal PDM 

4.1. Reproducibility of the observed spectra with universal PDM and reduced 2χ  

Figure 4.1 shows the reflectance spectra of 92 bands and the reconstructed spectra calculated from the pattern 

decomposition coefficients obtained for various sensors. In the figure, red rhombuses show the 92 bands of the 

ground-measured CONTINUE data. The blue broken line, green broken line, and purple crosses represent 

reconstructed spectra for the ALOS, GLI, and CONTINUE sensors, respectively. The original spectra are 

reproduced well, except those from ALOS. The reconstructed spectra for ETM+, MODIS, and MODEL are 

almost the same as the spectra for GLI and CONTINUE. For the ALOS sensor, the data points corresponding to 

the ALOS band wavelengths (499.5 ~ 1,100.5 nm) are reproduced exactly. However, above wavelengths of 1,000 

nm, the reproduced values differ from the original data. 

Since we have four fitting parameters, wC , vC , sC , and 4C , the reflectance values at each band wavelength 

for the four-band sensors (MSS and ALOS) were reproduced exactly. The reduced 2χ  could not be calculated. 

Here, we compare the reconstructed spectrum of the 92 bands for each sensor with ground-measured 

CONTINUE data. Figure 4.2 shows the results of the reduced 2χ  calculated for the 92 bands. Approximately 

600 samples were used. The values decrease as the band number increases and converge at 0.00066 for band 

numbers larger than five (TM). Table 4.3 lists the average values of the reduced 2χ  for each sensor. The square 

root of 0.00062 is 0.025 (2.5%), which is the fitting error per degree of freedom. 
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Figure 4.1. Original reflectance and reconstructed reflectance spectra. A) Typical vegetation 
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sample, B) Yellow leaf sample, C) Typical soil sample, D) Water sand mixed sample. 

Table 4.1.  Average values and root mean squares (rms) of the reduced 2χ  

Sensor MSS ALOS ETM+ MODIS GLI MODEL CONTINUE 
2χ  0.20861 0.01404 0.00083 0.00069 0.00068 0.00065 0.00062 

rms 0.457 0.118 0.029 0.026 0.026 0.025 0.025 

 

 
Figure 4.2.  Reduced 2χ  for reconstructed spectra 

4.2. Correlation of pattern decomposition coefficients 
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Figure 4.4. Correlation of the universal pattern decomposition coefficients. A) ETM sensor and CONTINUE 

sensor, B) MODIS sensor and CONTINUE sensor, C) GLI sensor and CONTINUE sensor, D) 

MODEL sensor and CONTINUE sensor, 

 

Figure 4.4 shows the correlation of the UPDM coefficients obtained using the universal pattern decomposition 

method. The horizontal-axis shows the UPDM coefficients for the CONTINUE sensor, and the vertical-axis 

shows the ETM＋, MODIS, GLI, or MODEL sensor coefficients. As expected, the coefficients obtained for each 

sensor nearly equal the coefficients obtained from the CONTINUE sensor. Table 4.2 lists the linear regression 
coefficients of xaxf i=)(  ( 4,3,2,1=i ) for correlating the UPDM coefficients of each sensor, and the root 

mean square (rms) of the residuals of coefficient Ck  (k = w, v, s, 4). Total values were obtained from all UPDM 
coefficients by linear regression. The coefficients of ia  were nearly 1 for all sensors, and the rms values were very 

small compared with the coefficient values. This means that the UPDM coefficients are sensor-independent. 
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Table 4.2. Coefficients of the linear regression function and the root mean square (rms) values of the residuals 
 

 GLI ETM+ MODIS MODEL 

 1a  rms 2a  rms 3a  rms 4a  rms 

wC  1.0122 0.0047 0.9615 0.0036 1.0390 0.0045 1.0125 0.0038 

vC  1.0032 0.0073 0.9801 0.0114 1.0009 0.0059 1.0087 0.0048 

sC  1.0083 0.0112 1.0057 0.0074 1.0105 0.0115 0.9969 0.0061 

4C  0.9925 0.0052 0.9980 0.0057 1.0077 0.0046 0.9735 0.0042 

total 1.0070 0.0075 0.9992 0.0077 1.0087 0.0073 0.9995 0.0049 

 

 

5. Summary and conclusions 

   We developed a universal pattern decomposition method (UPDM) to obtain sensor-independent pattern 

decomposition coefficients for reflectance data in the 371 to 1,750 nm wavelength range. For this, we analyzed 

about 600 ground-measured samples, including green-leaf, yellow-leaf, dead-leaf, soil, water, and concrete 

samples. A supplementary spectral pattern was used to counteract the influence of withering vegetation. The 

standard spectral patterns of water, vegetation, soil, and the supplementary pattern were normalized for the entire 

spectral band from 350 to 2,500 nm, excluding the region of strong vapor absorption. The total number of bands 

was 1,260 with 1-nm spacing. 

We verified that the pattern decomposition coefficients obtained using the UPDM are nearly sensor 

independent. That is, each sensor showed nearly the same coefficient values within 0.77% of the rms. Exceptions 

were four-band sensors, such as MSS and ALOS. The reduced 2χ  values for Landsat/ETM+, Terra/MODIS, 

and ADEOS-II/GLI were around 0.00070. The square root of 0.00070 is 0.026 (2.6%). Using this method, we can 

analyze satellite data independent of the sensor used and compare the results of analyses directly, using 

multispectral data effectively. 

    To further validate this UPDM, we will apply data observed over Wuhan, China, and the Kii Peninsula, 

Japan with the ETM+, MODIS, and GLI satellites. We will define a sensor-independent vegetation index as a 

linear function of the UPDM coefficient and will study sensor-independent ground classifications and NPP 

estimation in future research. 
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