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Abstract. The universal pattern decomposition method (UPDM) is a sensor-independent 

method in which each satellite pixel is expressed as the linear sum of fixed, standard spectral 

patterns for water, vegetation and soil. The same normalized spectral patterns can be used for 

any satellite sensor. Supplementary patterns are included when necessary. The UPDM has 

been successfully applied to simulated data for Landsat/ETM+, Terra/MODIS, 

ADEOS-II/GLI and 92 bands-CONTINUE sensors using ground-measured data. This paper 

validates the UPDM using MODIS and ETM+ data acquired over the Three Gorges region of 

China. The reduced χ2 values of selected area D, that with the smallest terrain influences, are 

0.000409 (MODIS) and 0.000181 (ETM+), and the average linear regression factor between 

MODIS and ETM+ is 1.0077, with rms 0.0082. The linear regression factor for the VIUPD 

between MODIS and ETM+ data of area D is 1.0089 with rms 0.0696. Both UPDM 

coefficients and the vegetation index (VIUPD) are sensor-independent. 

 

1. Introduction 

Multi-temporal and multi-sensor satellite data supply a wealth of information for monitoring 

environmental changes at regional, continental, and global scales. Past studies have focused on 

terrestrial land cover, vegetation classification (Muchoney et al., 2000), and natural calamities. In 

addition, satellite data commonly add to studies in oceanography, hydrology, geology, forestry, and 

meteorology. Larger volumes of multi-spectral data have become available from Landsat/TM 

(ETM+), Terra (Aqua)/MODIS, ADEOS-II/GLI and other sensors. The characteristics of each sensor 

differ, as the number of bands, the band wavelengths and the central wavelength of each band vary by 

satellite (Zhang et al., 2004). Thus, multisensor products must incorporate sensor dependencies. Such 

dependencies are extremely disadvantageous for global change research (Teillet et al., 1997).  

The universal pattern decomposition method (UPDM) is a sensor-independent method that is 

tailored for satellite data analysis. Sets of spectral reflectance measured by a sensor are transformed by 
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the UPDM into three or four coefficients with three or four fixed spectral reflectance patterns. Spectral 

reflectance patterns are determined in the spectral region between 350 nm and 2500 nm and are called 

the “universal standard spectral patterns.” Sensor wavelength values are selected from the universal 

standard spectral patterns to analyze the spectral region of each sensor. The coefficients are “pattern 

decomposition coefficients.” This method has been successfully applied to simulated data with 

wavelengths observed by Landsat/ETM+, Terra/MODIS, ADEOS-II/GLI and 92 bands-CONTINUE 

sensors (Zhang et al., 2003). The resulting pattern decomposition coefficients are independent of the 

sensor. That is, regardless of the sensor, the four coefficients are nearly the same for the same samples. 

The average estimation error of reduced χ2 values for Landsat/TM (ETM+), Terra/MODIS, 

ADEOS-II/GLI and CONTINUE sensors is 0.025 (Zhang et al., 2004). 

Conventional PDM can be explained using both spectral mixing analysis and multi-dimensional 

analysis (Zhang et al., 2004). In the UPDM, the non-negative constraint for the coefficient solution is 

removed. The UPDM is a multi-dimensional analysis wherein standard patterns are interpreted as an 

oblique coordinate system, and coefficients are the coordinates of a pixel’s reflectance. In the UPDM, 

therefore, each pixel in a multi-spectral image is an observation vector that can be projected to a 

subspace that consists of standard water, vegetation, and soil patterns. Supplemental patterns can be 

included when necessary (Zhang et al., 2004). This approach includes an orthogonal independent 

space, as any data in the multi-dimensional space can be approximated as a vector in this three- (or 

four-) dimensional standard subspace. 

The ultimate goal is to apply the UPDM to satellite data. UPDM analyses using satellite data are 

more intricate than those using ground-measured data because of the presence of the atmosphere. 

Previous UPDM studies used about 600 ground samples (Zhang et al., 2004). However, even this 

number of samples cannot cover all ground objects. This study validated the sensor-independent 

characteristics of the UPDM using MODIS and ETM+ satellite data from over the Three Gorges 

region in China, and assessed the independence of a vegetation index based on the universal pattern 

decomposition method (VIUPD) (Zhang et al., 2004) using MODIS and ETM+ data.  

 

2. The universal pattern decomposition method 

Previous studies have discussed PDM (Fujiwara et al., 1996; Muramatsu et al., 2000; Daigo et al., 

2004) and UPDM (Zhang et al., 2003, 2004) algorithms. The UPDM decomposes reflectance values at 

each pixel into a linear sum of standard spectral patterns for water, vegetation, soil and any 

supplemental patterns using the following formula (Zhang et al., 2004):   

44 iissivviwwi PCPCPCPCR ⋅+⋅+⋅+⋅→ M                               (1) 

where Ri is the reflectance of band i measured on the ground (or by satellite sensor), Cw, Cv and Cs are 

the respective decomposition coefficients, and Piw, Piv, and Pis are the standard spectral patterns of 

water, vegetation and soil normalized with respect to the properties of each sensor. C4 represents 
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supplemental coefficients. In this case, a yellow-leaf spectrum is used, but the supplemental pattern is 

not fixed. Rather, it depends on the study purpose. Pi4 is the supplementary standard pattern for i bands 

and is an optional component that is also controlled by the purpose of the study. 

Equation (1) can be expressed using matrix notation as follows: 
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or                                                                    rPCR +=                                                               (3) 

where R = [R1, R2, …, Rn]T is the column vector of observations, n is the number of spectral bands; P = 

[Pw, Pv, Ps, P4] is the n × 4 matrix of which the row vector is the standard spectral pattern for band 

number n, C = [Cw, Cv, Cs, C4]T is the column vector of UPDM coefficients and r is the residual column 

vector for band i. Inverting (3) and minimizing the sum-of-squared-error criterion function (Duda, et 

al., 2001) yields 

Js= 2
2PCR −                                                                       (4) 

This function can be solved by a gradient search procedure, as below:  

C
PCRPCRCJs
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Τ )()()(                                                     (5) 

and setting it equal to zero. The unique solution of C is 

RPPPC T1)( −Τ=                                                               (6) 

where R is a vector known from satellite data, and P is a standard spectral pattern matrix as described 

above. The spectral pattern matrix is derived from normalized standard spectral patterns of water, 

vegetation, soil, and supplementary data, which in this case is yellow leaf (Zhang et al., 2004). 

Spectral reconstruction precision was evaluated using reduced Chi-square values that satisfied 

the expression 
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Here, n is the number of bands, and r is the error of band i.  

3. Data Processing 

3.1 Data used in this analysis 

Landsat /ETM+ standard product data (path 125/row 39) observed over the Three Gorges region 

of China on 2 April 2002 were acquired from the Beijing Remote Sensing Ground Station. 

Data are geo-referenced with a spatial resolution of 28.5 m. The solar zenith angle was 35.3˚, and the 

observation time was 10:00 LT. 
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(a) MODIS image 

 
(b) ETM+ image 

Figure 1. MODIS and ETM+ reflectance image acquired over the Three Gorges region of China on 2 April 
2002. Selected areas A, B, C, D refer to areas from alpine regions to hilly regions without cloud 
influences, (a) MODIS band 5, 4, 1 is displayed as red, green, blue, respectively, and (b) ETM+, band 
6, 4, 1 is displayed as red, green, blue, respectively. The observed time of MODIS and ETM+ is 11:18 
and 10:00, respectively. 
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Terra/MODIS data acquired over the same region on 2 April 2002 at 11:18 LT were provided by the 

MODIS Receiving Station at Wuhan University. MODIS bands 1 and 2 have horizontal resolutions of 

250 m, and bands 3–7 have horizontal resolutions of 500 m; the average solar zenith angle is around 

34.0˚. MODIS L1B data contain geometric distortions that are reduced by geometric correction using 

the common nearest neighbor approach described in many studies. In this method, DN values are not 

changed, although a half-pixel shift in the output image space can occur (Lillesand, et al., 2000). Each 

corrected pixel in the output image is geometrically similar to ETM+ data. This study used MODIS 

bands 1 to 7 re-sampled to a spatial resolution of 484.5 m, 17 times the resolution of ETM data (28.5 

m). Figure 1 shows reflectance images for MODIS (a) and ETM+ (b) data for selected areas A, B, C 

and D, where terrain conditions vary by area. 

ETM+ data are standard products that have better geo-referencing and geometric corrections. Thus, 

spatial re-sampling was applied to the data to match re-sampled MODIS data (at 484.5 m resolution). 

The MODIS and ETM data covered the same region, between 29.35˚ and 31.28˚ N and 109.52˚ 

and 112.00˚ E, on the same observed date. Observation times differed by about an hour and the solar 

zenith angle was similar. Periodic noise from a mechanical sensor is present every 20 lines in MODIS 

band 5 (1230.0~1250.0 nm) but was ignored; this noise had little effect on the results of the analysis. 
 

3.2 Radiometric correction and reflectance retrieval 

Radiometric corrections to surface reflectance allow quantitative comparisons with spectral 

target signatures. Satellite sensors record total reflected energy and output the value as an electric 

signal that is called a DN value. The calibration task is to retrieve satellite radiances. 

Radiance values for each ETM+ pixel in each band can be derived from the digital number 

(DN) according to (Joachim et al., 1991) 

DNaaL (ETM)1(ETM)0(ETM) +=                                                      (8) 

MODIS radiances are (NASA, 2000) 

)( MODIS)(0(MODIS)1(MODIS) aDNaL −=                                              (9) 

Here, L is the total radiance for the ETM+ and MODIS sensors at the satellite, in 

mW•cm-2•sr-1•µm-1; calibration constants a0 and a1 are offsets and gains for the ETM+ and 

MODIS sensors and are provided by data distribution agencies. 

Radiation is scattered as it passes through and interacts with the atmosphere. Typically, total 

radiance is the sum of target-reflected radiance and Rayleigh scattering-caused path radiance 

(Muramatsu et al., 2000). Radiometric correction in this case means removing the effects of 

Rayleigh scattering. Various atmospheric correction methods can be applied (Zhang et al., 1998). 

More precise techniques use a statistical analysis of automatically masked invariant scene 

elements to derive a linear band-to-band transformation function (Schott et al., 1986). However, 
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statistical methods give no quantitative measure of actual properties, so the present study uses a 

simplified Rayleigh scattering correction that ignores environmental scattering. Atmospheric 

Rayleigh scattering path radiance is approximated by 
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where Lr is the Rayleigh scattering path radiance, in mW•cm-2•sr-1•µm-1, and µ0 and µ represent the 

cosines of the sun zenith angle θ0 and satellite zenith angle θ, respectively. E0 is the solar 

irradiance at the top of the atmosphere, in mW•cm-2•µm-1, and d is the earth–sun distance in 

astronomical units. Pr(φ) is the Rayleigh scattering phase function and can be written as 
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4
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with backscattering angle  

0180 θϕ −=                                                               (12) 

τr is the molecular optical thickness for a standard Rayleigh atmosphere (Joachim et al., 1991): 
09.4

r 00879.0 −= λτ                                                         (13) 

Solving for path radiance yields an equation for ground-target reflectance ρλ :  
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For MODIS reflectance at the top of the atmosphere, we can also compute ground-target reflectance 

using reflectance gain and offset in the MODIS L1B products (Zhang et al. 2005):  

0

,R,R
MODIS)( cos
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θ

ρ λλλ
λ

bDNm −
=                                            (15) 

Here, mR,λ and bR,λ are reflectance gain and offset. The path reflectance value computed by Rayleigh 

scattering path radiance is then removed. Table 1 shows Rayleigh scattering reflectance values for 

the MODIS and ETM+ sensors. Figure 2 shows spectra of MODIS and ETM+ data using values listed 

in Table 1 band by band. Blue represents the logarithmic value of reflectance for each pixel. Green 

represents the reflectance frequency. 
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(a) MODIS 

 
(b) ETM+ 

Figure 2. MODIS and ETM+ ground-target reflectance histogram in respect to Figure 1. (a) MODIS (b) 
ETM+; blue represents the logarithmic value of reflectance for each pixel. Green represents the 
reflectance frequency. 

 
Table 1 Rayleigh scattering correction values for MODIS and ETM+ 

  MODIS ETM+  

Band  
 

Wavelength 
nm 

E0 
W/m2/µm/sr 

Rayleigh 
scattering 

Wavelength 
nm 

E0 
W/m2/µm/sr 

Rayleigh 
scattering 

1* 459.0~479.0 2088.039 0.060 450.0~515.0 1969.0 0.055 

2* 545.0~565.0 1865.903 0.033 525.0~605.0 1840.0 0.031 

3 620.0~670.0 1607.099 0.019 630.0~690.0 1551.0 0.017 

4 841.0~876.0 992.098 0.006 775.0~900.0 1044.0 0.007 

5 1230.0~1250.0 474.399 0.001 1550.0~1750.0 225.7 0.000 

6* 1628.0~1652.0 240.205 0.000 2090.0~2350.0 82.1 0.000 

7 2105.0~2135.0 90.336 0.000    

 
*In this study, for convenience, we changed the MODIS band 1, 2 to band 3, 4 according to the wavelength value; for 
ETM+, we changed band 7 to band 6, respectively. The earth–sun distance on 2 April was 0.999910 (Zhang, et al. 2005) 
in astronomical units (149.6×106km); the Rayleigh scattering value is expressed by the reflectance value. 
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3.3 UPDM subspace projection 

Reflectance values for each pixel in multi-dimensional space were projected to four-dimensional 

UPDM space to transform the standard spectral pattern from the normalized standard spectral pattern 

at wavelengths between 350 nm and 2500 nm. For the MODIS sensor, the standard spectral vector is 
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The vector for the ETM+ sensor is 
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Figure 3. MODIS and ETM+ multispectral reflectance data expressed in the UPDM dimensional space. 
Upper rows from left to right are MODIS data expressed by Cs-Cv, Cs-Cw, Cv-Cw two dimensional 
spaces; lower rows are ETM+ data. 
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UPDM coefficient vectors were computed for each pixel using Equation (6). Multispectral data in 

multidimensional space were projected to four UPDM dimensional space. The UPDM vector in the 

new dimensional space has lower band-by-band correlation coefficients than the original dimensional 

space. Figure 3 shows MODIS and ETM+ data in UPDM space. For convenience, four-dimensional 

space is expressed via two-dimensional space of Cs, Cv and Cw, respectively, in Figure 3. The long tail 

represents clouds that differ between MODIS and ETM+ data owing to the one-hour difference in 

observation times. Figure 1 shows more cloud in the MODIS data than in the ETM+ data. Cloud-free 

regions are almost the same in the sensor-independent UPDM space. 

 

4. Results and Discussion 

4.1  Linear relationship of UPDM coefficients as a function of spatial resolution 

 
Figure 4. Relation between UPDM coefficients computed using ETM+ data with different 

spatial resolutions. The horizontal axis represents the UPDM coefficients computed 
from pixels with 484.5-m resolution, and the vertical axis represents the average 
values of UPDM coefficients using17×17 pixels, which were computed from 
28.5-m resolution ETM+ data. 

   
 

UPDM coefficients show a linear relationship with data computed using different spatial 

resolutions. In this study, we computed UPDM coefficients using ETM+ data that were re-sampled to 

a horizontal resolution of 484.5 m. Of course, we could have used data with a horizontal resolution of 

28.5 m and then computed the average value of the UPDM coefficients using 17×17 pixels (28.5×17= 

484.5). Figure 4 shows the linear relationship between these two UPDM coefficients. The horizontal 

axis represents the UPDM coefficients computed from pixels with 484.5-m resolution, and the vertical 

axis represents the average values of UPDM coefficients using17×17 pixels, which were computed 

from 28.5-m resolution ETM+ data. 
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4.2 Sensor independence of UPDM coefficients 

Because UPDM is a sensor-independent method, UPDM coefficients derived from different 

sensors should have the same approximate values, at least theoretically. Previous studies using 

ground-measured data support this statement (Zhang et al., 2004). UPDM coefficients computed in 

this paper use MODIS and ETM+ data acquired over the Three Gorges region on 2 April 2002. The 

relationship between coefficients was compared in four selected areas (A, B, C, and D) where 

topography varied from mountainous to hilly, as shown in Figure 1. Figure 5 shows the comparison. 

Linear regression equations are (a) f(x) = 1.0103x, (b) f(x) = 0.9963x, (c) f(x) = 1.0057x, and (d) f(x) = 

1.0077x. Region D shows a linear relationship and the smallest root mean square (rms) value. Area D 

is the most sensor independent because it is the area in which terrain has the least influence. 

 
(a) Area A (b) Area B 

(c) Area C (d) Area D 

 
Figure 5. Correlation of the UPDM coefficients between MODIS and ETM+ sensor data. (a) area A with 1875 

pixels, (b) area B with 2500 pixels, (c) area C with 2500 pixels, and (d) area D with 2500 pixels. 
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Table 2. (a) Linear regression parameter for area A using MODIS and ETM+ data 

UPDM coefficients Linear regression function 

coefficients coefficient values rms vegetation function rms 

Cw 0.4808 0.0047 

Cv 1.1496 0.0072 

Cs 0.9705 0.0170 

C4 0.3088 0.0012 

VIUPD:

NDVI:

EVI:

f(x) ＝ 1.0332x 

f(x) ＝ 0.8860x 

f(x) ＝ 0.8031x 

0.0633 

0.0392 

0.0250 

Σ 1.0103 Coefficients function: f(x) ＝ 1.0103 x 0.0105 

 

Table 2. (b) Linear regression parameter for area D using MODIS and ETM+ data 

UPDM coefficients Linear regression function 

coefficients coefficient values rms vegetation function rms 

Cw 0.3247 0.0032 

Cv 1.1432 0.0066 

Cs 0.9414 0.0146 

C4 0.3923 0.0013 

VIUPD:

NDVI:

EVI:

f(x) ＝ 1.0666x 

f(x) ＝ 0.9243x 

f(x) ＝ 0.8261x 

0.0636 

0.0369 

0.0233 

Σ 0.9963 Coefficients function: f(x) ＝ 0.9963 x 0.0094 

 
Table 2. (c) Linear regression parameter for area C using MODIS and ETM+ data 

UPDM coefficients Linear regression function 

coefficients coefficient values rms vegetation function rms 

Cw 0.4320 0.0031 

Cv 1.0870 0.0010 

Cs 0.9356 0.0161 

C4 0.2468 0.0018 

VIUPD:

NDVI:

EVI:

f(x) ＝ 1.0312x 

f(x) ＝ 0.9204x 

f(x) ＝ 0.8262x 

0.0917 

0.0689 

0.0431 

Σ 1.0057 Coefficients function: f(x) ＝ 1.0057 x 0.0104 

 
Table 2. (d) Linear regression parameter for area D using MODIS and ETM+ data 

UPDM coefficients Linear regression function 

coefficients coefficient values rms vegetation function rms 

Cw 0.5696 0.0017 

Cv 1.0427 0.0097 

Cs 0.9540 0.0114 

C4 -0.0693 0.0028 

VIUPD:

NDVI:

EVI:

f(x) ＝ 1.0089x 

f(x) ＝ 0.9137x 

f(x) ＝ 0.8130x 

0.0696 

0.0409 

0.0334 

Σ 1.0077 Coefficients function: f(x) ＝ 1.0077 x 0.0082 

 
Table 2 shows details of the UPDM coefficients for the two satellite sensors in each of the four 

areas. The table includes correlations, linear regression coefficients and vegetation index correlations. 

Of the four UPDM coefficients, Cv and Cs show linear behavior, whereas Cw and C4 do not, because 

Cw and C4 values are very small. A minor change caused by a pixel shift or topographic influence may 
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cause a relatively large shift in value. Figure 5 shows Cw and C4 values clustered around zero; a small 

shift in values will move the linear regression coefficients away from the line f(x) = x. Figure 5 also 

shows somewhat larger rms values because of the re-sampling method for MODIS data. MODIS 

pixels may include a half-pixel shift, so pixels in MODIS and ETM+ data may not be identical. Such 

an effect is reduced by comparing 3×3 pixel averages of UPDM coefficients. Figure 6 shows the 

results of that comparison.  

 

(a) Area A (b) Area B 

(c) Area C (d) Area D 

 
Figure 6. Correlation of the UPDM coefficients computed using average values of 3 × 3 pixels between MODIS 

and ETM+ sensor. (a) area A with 200 pixels, (b) area B with 256 pixels, (c) area C with 256 pixels, (d) 
area D with 256 pixels. 
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(a) MODIS VIUPD image (b) ETM+ VIUPD image 

 
(c) MODIS NDVI image (d) ETM+ NDVI image 

 
(e) MODIS EVI image (f) ETM+ EVI image 

 
Figure 7 Vegetation index images computed from MODIS and ETM+ data. (a), (c) and (e) are the vegetation indices 

using VIUPD, NDVI, and EVI for the MODIS sensor, and (b), (d) and (f) are the vegetation indices using VIUPD, 
NDVI, and EVI for the ETM+ sensor. 
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(a) VIUPD (a) NDVI (a) EVI 

 
(b) VIUPD (b) NDVI (b) EVI 

 
(c) VIUPD (c) NDVI (c) EVI 

 
(d) VIUPD (d) NDVI (d) EVI 

 
Figure 8 Correlations of MODIS and ETM+ vegetation indices. Columns denote values computed 

from selected areas (A, B, C and D) in Figure 1; rows refer to the vegetation index (VIUPD, 
NDVI, and EVI) obtained from data in the same areas.  
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(a) VIUPD (a) NDVI (a) EVI 

 
(b) VIUPD (b) NDVI (b) EVI 

 
(c) VIUPD (c) NDVI (c) EVI 

 
(d) VIUPD (d) NDVI (d) EVI 

 

Figure 9 Correlations of MODIS and ETM+ 3×3 averaged vegetation indices. Columns denote 
values computed from selected areas (A, B, C, and D) in Figure 1; rows refer to the 
vegetation index (VIUPD, NDVI, and EVI) obtained from data in the same areas.  
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4.3 Sensor independence of vegetation index 

A new vegetation index has been proposed based on the universal pattern decomposition method 

(VIUPD) (Zhang, et al., 2004) and derived from sensor-independent UPDM coefficients. Previous 

studies have shown that the VIUPD is sensor independent. Table 2 compares the three vegetation 

indices. Figure 7 shows the three vegetation indices (VIUPD, NDVI, and EVI) computed from 

MODIS and ETM+ data. VIUPD images from MODIS and ETM+ show more detailed information 

than NDVI and EVI images, and the VIUPD images derived from MODIS and ETM+ data are similar. 

Figure 8 shows correlations between vegetation indices using data in the selected areas in Figure 1. 

Columns in the figure are for areas A, B, C and D as noted in Figure 1; rows denote the vegetation 

index: VIUPD, NDVI, and EVI. Two points stand out, namely the linear correlation and the smaller 

rms values. From area A to area D, VIUPD increases in independence: area D has a rms of 0.0696 and 

a regression function of f(x) ＝ 1.0089x, a function which is the most linear relationship found in this 

study. Values with even smaller rms values are shown in Figure 9, which shows vegetation indices 

computed with 3×3 pixel averages. 

 

5. Conclusion 

Four UPDM coefficients were computed using Landsat /ETM+ and Terra/MODIS data 

observed over the Three Gorges region. Vegetation indices were computed in the same 

multi-dimensional space. UPDM coefficients computed with 6-band ETM+ data, with 

wavelengths between 350 and 2500 nm (the solar reflected wavelength region), were compared to 

coefficients computed with MODIS data in bands 1 to 7. Both datasets were re-sampled to a 

spatial resolution of 484.5 m. The DN value was converted to a reflectance value by considering 

radiometric calibration and atmospheric correction. Reflectance values are the input vector for 

calculating UPDM coefficients. Data processing precision depends on the algorithm selected. 

Because the aim of the present study was to assess the sensor independence of the UPDM, an easy 

and fast method was selected to preprocess the data. Such a preprocessing method may impact the 

representativeness of UPDM coefficients and derived vegetation indices.  

The four UPDM coefficients are independent of the sensor. The independence of Cs and Cv 

is better than Cw and C4, because both Cw and C4 have values near zero. Consequently, any 

small bias will move them far from a linear line. The fitted errors of reduced chi-square calculated 

from (7) for MODIS data are 0.000698, 0.000549, 0.000475, and 0.000409 for areas A through D, 

respectively. Similarly, fitted errors for ETM+ data are 0.000339, 0.000296, 0.000228, and 

0.000181 for areas A through D, respectively. UPDM coefficients and vegetation indices (VIUPD, 

NDVI, and EVI) were computed using 3×3 pixel averages to evaluate the effect of pixel spatial 

location errors. Coefficients and vegetation indices computed this way both showed smaller rms 



 17

values. ETM+ gives smaller fit errors than MODIS, because ETM+ standard products have more 

precise geometry. Results also suggest that the VIUPD is sensor-independent, especially in areas 

with little topographic influence, such as areas C and D.  

Hyper-multi dimensional spectral data observed by any sensor can be projected to the 

universal three- (or four-) dimensional UPDM space. UPDM techniques can reduce spectral 

features, decrease data amounts and allow sensor-independent operations including land cover 

classification and calculation of a sensor-independent vegetation index. Analytic studies based on 

UPDM space are possible. Radiometric and geometric errors in any satellite data used must be 

small. 
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