
 
 

４６ 
 
 
 
 
 
 
 
 
 
 

Note on social choice allocation in exchange economies 
with many agents 

 
Takeshi Momi 

(Department of Economics, Doshisha University) 
September 2011 



Note on social choice allocation in exchange economies

with many agents

Takeshi Momi ∗

Department of Economics, Doshisha University

September, 2011

Abstract

In this paper we show that in pure exchange economies there exists no Pareto
efficient and strategy-proof allocation mechanism which ensures positive consump-
tions to all agents. We also show that Pareto efficient, strategy-proof, and non-
bossy allocation mechanism is dictatorial. We further show that if there exists
three agents, then the allocation given by a Pareto efficient, strategy-proof, and
non-dictatorial mechanism should depend only on one agent’s preference who is al-
ways allocated zero consumption. That is, we prove Zhou’s (1991) conjecture in
three-agent economies and show that a Pareto efficient and strategy-proof social
choice function in such an economy should be Satterthwaite and Sonnenschein’s
(1981) type.

JEL classification: D71
Keywords: Social choice, Strategy-proofness, Pareto efficiency, Exchange econ-

omy

.

1 Introduction

Since the seminal work by Hurwicz (1972), the manipulability of an allocation mecha-

nism in pure exchange economies has been intensively studied. Especially Zhou (1991)

established that there exists no Pareto efficient, strategy-proof and non-dictatorial alloca-

tion mechanism in exchange economies with two agents having classical (i.e. continuous,
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strictly monotonic and strictly convex) preferences and conjectured that even in many-

agent economies there would exist a agent (reverse dictator) who is always allocated zero

consumption subject to a Pareto efficient and strategy-proof allocation mechanism. As

shown by Satterthwaite and Sonnenchein (1981), in many-agent economies there exists

a Pareto efficient, strategy and non-dictatorial allocation mechanism. In their example,

some agent is allocated the whole endowment depending on the shape of the preference

of a agent who is always allocated zero consumption.

The impossibility result in two-agent economies has been strengthened by proving that

there exists no Pareto efficient, strategy-proof and non-dictatorial social choice function on

more restricted domains of preferences (Schummer (1997), Ju (2003), Hashimoto (2008)).

Nicolò (2004) however showed a Pareto efficient, strategy-proof and non-dictatorial social

choice function on the domain of Leontief preferences.

Compared to these researches of two-agent economies, we would not still have a satis-

factory understanding about allocation mechanism in economies with many agents. Ser-

izawa (2002) established that there exists no Pareto efficient, strategy-proof, and individ-

ually rational social choice function in many-agent economy. The individual rationality

requires the social choice function to allocate a consumption preferred to each agent’s

initial endowment. Serizawa and Weymark (2003) established that there exists no Pareto

efficient, strategy-proof and minimum consumption guarantee social choice function in

many-agent economy. The minimum consumption guarantee condition requires the so-

cial choice function to allocate a consumption whose distance from the origin is greater

than some ε. These results are short to Zhou’s original conjecture. On the other hand,

a counter example to Zhou’s conjecture was found by Kato and Ohseto (2002). They

showed that in economies with agents more than or equal to four, there exists a Pareto

efficient and strategy-proof mechanism by which all agents have opportunities of receiv-

ing non-zero consumption. In their example, however, the whole endowment is always

allocated to some agent as in the case of Satterthwaite and Sonnenschein’s example. To

the best of our knowledge, many economists believe that Zhou’s conjecture would be true

with such a correction though no formal proof has been obtained.

In this paper, we establish three results. First, we prove that there exists no Pareto

efficient, strategy-proof and positive consumption guarantee social choice function. The

positive consumption guarantee condition requires that the social choice function always

allocates non-zero consumptions to all agents, which is therefore a slight relaxation of the

minimum consumption guarantee condition by Serizawa and Weymark (2003). Second, we

prove that there exists no Pareto efficient, strategy-proof, non-bossy, and non-dictatorial

social choice function. A social choice function is non-bossy if a change of preference

of an agent does not affect the allocation as long as it does not affect the agent’s own

consumption. In two-agent economies, Pareto efficiency implies non-bossiness. It is be-

lieved that the difficulty of many-agent economies is in the lack of non-bossiness. Third,
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we characterize Pareto efficient and strategy-proof social choice functions in three-agent

economies. We prove that in three-agent economies the allocation given by a Pareto effi-

cient, strategy-proof and non-dictatorial social choice function depends only on one agent’s

preference who is always allocated zero consumption. That is, in three-agent economies,

Zhou’s conjecture is true and a Pareto efficient and strategy-proof social choice function

should be dictatorial or Satterthwaite and Sonnenschein’s type. We prove these results

on the domain of classical, homothetic, and smooth preferences. It is also proved that the

same results hold on larger domains of classical preferences.

The rest of this paper is organized as follows. Section 2 describes the model and shows

the results. Sections 3 and 4 explain our two techniques we use in this paper, which might

have a wide range of applications in the literature. Sections 5-8 are proofs of theorems.

2 The model and Results

We consider an economy with N agents indexed by N = {1, . . . , N} where N ≥ 2 and

L goods indexed by L = {1, . . . , L} where L ≥ 2. The consumption set for each agent

is RL
+. A consumption bundle for agent i ∈ N is a vector xi = (xi

1, . . . , xi
L) ∈ RL

+. The

total endowment of goods for the economy is Ω = (Ω1, . . . , ΩL) ∈ RL
++. An allocation is

a vector x = (x1, . . . , xN) ∈ RLN
+ . The set of feasible allocation for the economy with N

agents and L goods is thus

X =

{
x ∈ RLN

+

∣∣∣∣∣
∑
i∈N

xi ≤ Ω

}

A preference R is a complete, reflexive, and transitive binary relation on RL
+. The

corresponding strict preference PR and indifference IR are defined in the usual way. For

any x and x′ in RL
+, xPRx′ implies that xRx′and not x′Rx, and xIRx′ implies that xRx′

and x′Rx. Given a preference R and a consumption bundle x ∈ RL
+, the upper contour

set of R at x is UC(R, x) = {x′ ∈ RL
+|x′Rx} and the lower contour set of R at x is

LC(R, x) = {x′ ∈ RL
+|xRx′}. Further we let I(x; R) = {x′ ∈ RL

+|x′IRx} denote the

indifference set of R at x and P (x; R) = {x′ ∈ RL
+|x′PRx} denote the strictly preferred

set of R at x.

A preference R is continuous if UC(R, x) and LC(R, x) are both closed for any x ∈ RL
+.

A preference R is strictly convex on RL
++ if UC(R, x) is strictly convex for any x ∈ RL

++.

A preference R is strictly monotonic on RL
++ if for any x and x′ in RL

++, x > x′ implies

xPRx′. A preference R is homothetic if for any x and x′ in RL
+ and any t > 0, xRx′

implies (tx)R(tx′). A preference R is smooth if for any x ∈ RL
++ there exists a unique

vector p ∈ SL−1 ≡ {x ∈ RL
+| ‖ x ‖= 1} such that p is the normal of a supporting

hyperplane to UC(R, x) at x. We call the vector p as gradient vector of R at x

3



We let RC denote the set of classical preferences R that is continuous on RL
+, strictly

convex and strictly monotonic on RL
++. Further we let R denote the set of preferences

R that is continuous on RL
+, strictly convex and strictly monotonic on RL

++, smooth, and

homothetic. In this paper, the results are proved on the restricted domain R, and then

extended to RC.

A preference profile is an N -tuple R = (R1, . . . , RN) ∈ RN . The subprofile obtained

by removing Ri from R is R−i = (R1, . . . , Ri−1, Ri+1, . . . , RN). It is sometimes convenient

to write the profile (R1, . . . , Ri−1, R̄i, Ri+1, . . . , RN) as (R̄i,R−i).

A social choice function f : RN → X assigns a feasible allocation to each preference

profile in RN . The set RN is the domain of the social choice function. For a preference

profile R ∈ RN , the outcome chosen can be written as f(R) = (f 1(R), . . . , fN(R)) where

f i(R) is the consumption bundle allocated to agent i by f .

Definition 1. A social choice function f is strategy-proof if f i(R)Rif i(R̄i,R−i) for

any i ∈ N, any R ∈ RN , and any R̄i ∈ R.

A feasible allocation is Pareto efficient if there is no other feasible allocation that would

benefit someone without worsening anyone else. That is x ∈ X is Pareto efficient for the

preference profile R if there exists no x̄ ∈ X such that x̄iRixi for any i ∈ N and x̄jPRj xj

for some j ∈ N. We say a social choice function is Pareto efficient when it always assigns

Pareto efficient allocations.

Definition 2. A social choice function f is Pareto efficient if f(R) is Pareto efficient

for any R ∈ RN .

We say a social choice function guarantee positive consumption if it always assigns

non-zero consumptions to all agents. This is a weaker condition than the minimum

consumption guarantee in Serizawa and Weymark (2003).

Definition 3. A social choice function f is positive consumption guarantee if f i(R) 	= 0

for any i ∈ N and any R ∈ RN .

We say a social choice function is dictatorial if there exists an agent who is always

allocated the total endowment.

Definition 4. A social choice function f is dictatorial if there exists i ∈ N such that

f i(R) = Ω for any R ∈ RN .

Following Satterthwaite and Sonnenschein (1981), we define SS mechanism, which

includes a dictatorial social choice function as a special case, as follows.

Definition 5. A social choice function f is an SS mechanism if the following conditions

are satisfied.
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(i) There exists i ∈ N such that f i(R) = 0 for any R ∈ RN .

(ii) For each R ∈ RN , there exists some j ∈ N such that f j(R) = Ω.

(iii) For any j 	= i, f j(Ri,R−i) = f j(Ri, R̄−i) for any R−i and R̄−i in RN−1, where i

is the agent satisfying (i).

That is, a social choice function is an SS mechanism if the total endowment is allocated

to some agent depending on agent i’s preference who is always allocated zero consumption.

We say a social choice function is non-bossy, if any change of a agent’s preference does

not affect the allocation as long as his consumption is not changed.

Definition 6. A social choice function f is non-bossy if f i(Ri,R−i) = f i(R̄i,R−i) im-

plies f(Ri,R−i) = f(R̄i,R−i) for any i ∈ N, any Ri, R̄i ∈ R and any R−i ∈ RN−1.

The paper’s main results follow.

Theorem 1. If a social choice function f : RN → X is Pareto efficient and strategy-

proof, then it violates positive consumption guarantee.

Theorem 2. If a social choice function f : RN → X is Pareto efficient, strategy-proof,

and non-bossy, then it is dictatorial.

Theorem 3. Suppose that N = 3. If a social choice function f : RN → X is Pareto

efficient and strategy-proof, then it is an SS mechanism.

These results are proved on the preference domain R. Let R̄ be a preference domain

such that R ⊂ R̄ ⊂ RC and redefine Definitions 1-6 on R̄.

It is easy to observe that Theorems 1 and 2 respectively implies the same results on the

larger domain R̄N .1 It would however need a proof that Pareto efficient and strategy-proof

social choice function f : R̄N → X should be an SS mechanism.

Corollary 1. Suppose N = 3 and R ⊂ R̄ ⊂ RC . If a social choice function f : R̄N →
X is Pareto efficient and strategy-proof, then it is an SS mechanism.

1If f : R̄N → X is Pareto efficient, strategy-proof and positive consumption guarantee, then it should
be so on the restricted domain RN , which however contradicts to Theorem 1. If f : R̄N → X is Pareto
efficient, strategy-proof and non-bossy, then it should be so on the restricted domain RN ; hence, by
Theorem 2, f is dictatorial on RN and there is a dictator i receiving the total endowment for any
R ∈ RN . Change each agent’s preference to any Rj ∈ R̄ in turn. Under the strategy-proofness, this
should not change the agent’s own consumption because the agent receives the total endowment or zero
consumption; hence this does not change the allocation because of the non-bossiness. Thus the agent i

should be a dictator of f : R̄N → X .
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3 Preliminary result I

In the following two sections we show two preliminary results which would be useful

to investigate the allocations assigned by Pareto efficient and strategy-proof social choice

functions. The first in this section is a slight generalization of a result proved by Hashimoto

(2008) and generalized by Momi (2011). They proved that in a two-agent economy where

the preferences are represented by Cobb-Douglas utility functions, if a social choice func-

tion is Pareto efficient and strategy-proof, then any change of a agent’s preference should

not affect the other’s utility level.

Next proposition insists that if an agent’s preference is changed while the other agents

have the same preference R̃, then the sum of the new consumptions allocated to the others

should be indifferent to the sum of the old consumptions with respect to the preference

R̃.

Proposition 1. Suppose that f : RN → X is a Pareto efficient and strategy-proof social

choice function. For any i ∈ N, any Ri, R̄i ∈ R and any R̃−i = (R̃, . . . , R̃) ∈ RN−1,

(
∑

j �=i f
j(Ri, R̃−i))IR̃(

∑
j �=i f

j(R̄i, R̃−i)).

The proof is essentially same as that in Momi (2011). For simple exposition we let

Ũ : RL
+ → R be a differentiable utility function representing the preference R̃. Following

Kannai (1970), we introduce a topology into R and let t → Rt be a continuous map

mapping a parameter t on any interval T to a preference Rt ∈ R. For such a map, we

let f(t) = f(Rt, R̃
−i) denote the allocation given by f when agent i’s preference is Rt

and the others’ are R̃. All we have to prove is that Ũ(
∑

j �=i f
j(t′)) = Ũ(

∑
j �=i f

j(t′′)) or

equivalently that Ũ(Ω−f i(t′)) = Ũ(Ω−f i(t′′)). Note that R is connected, hence that for

any Ri ∈ R and R̄i ∈ R, we can pick a continuous mapping t �→ Rt such that Rt′ = Ri

and Rt′′ = R̄i at some t′ and t′′.

Lemma 1. Let t �→ Rt ∈ R be a continuous map and let R̃−i = (R̃, . . . , R̃) ∈ RN−1. If

f is a Pareto efficient and strategy-proof social choice function, then f i(t) = f i(Rt, R̃
−i)

is a continuous function of t.

Proof. As t → t̄, f(t) converges because X is compact. We let f(t) → x̄ = (x̄1, . . . , x̄N).

All we have to show is that x̄i = f i(t̄).

We let U i(·; t) : RL
+ → R be a differentiable utility function representing the preference

Rt of agent i. Since f is strategy-proof, U i(f i(t); t) ≥ U i(f i(t̄); t) holds for any t. Espe-

cially at the limit of t → t̄, U i(x̄i; t̄) ≥ U i(f i(t̄); t̄) holds. If this equation holds with strict

inequality, then the agent would manipulate f by reporting Rt̃ where t̃ is sufficiently close

to t̄ when his true preference is Rt̄ because f i(t̃) is close to x̄i, and hence U i(f i(t̃); t̄) is

close to U i(x̄i; t̄). This violate the strategy-proofness of f . Therefore the equation holds

with equality: U i(x̄i; t̄) = U i(f i(t̄); t̄).
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We next show that x̄ should be a Pareto efficient allocation in the economy where one

agent’s preference is Rt̄ and others’ are R̃. Suppose that x̄ is not Pareto optimal. Then

in the economy with preferences Rt̄ and R̃, which are both strictly convex, there exists

x̂ = (x̂1, . . . , x̂N ) ∈ X such that U i(x̂i; t̄) > U i(x̄i; t̄) and Ũ(x̂j) > Ũ(x̄j) for any j 	= i.

When t̃ is sufficiently close to t̄, f(t̃) is sufficiently close to x̄ and Rt̃ is sufficiently close

to Rt̄. Therefore U i(x̂i; t̃) > U i(f i(t̃); t̃) and Ũ(x̂j) > Ũ(f j(t̃)) hold. This violates the

Pareto efficiency of f . Thus x̄ is a Pareto efficient allocation.

It is easy to observe that in the Edgeworth Box with consumer i’s preferences Rt

and the others’ R̃ ∈ R, the set of Pareto efficient allocations intersects consumer i’s one

indifference surface only once. Therefore if U i(x̄i; t̄) = U i(f i(t̄); t̄), and x̄ and f(t̄) are

both Pareto efficient allocations, then x̄i = f i(t̄) holds.

Lemma 2. If f is a Pareto efficient and strategy-proof social choice function, then

Ũ(Ω − f i(t′)) = Ũ(Ω − f i(t′′)) for any t′ and t′′.

Proof. We suppose that there exists t′ and t′′ such that Ũ(Ω − f i(t′)) 	= Ũ(Ω − f i(t′′))

and show a contradiction. Without loss of generality we assume t′ < t′′.

We first consider the case where Ũ(Ω−f i(t′)) > Ũ(Ω−f i(t′′)). Note that Ũ(Ω−f i(t))

is a continuous function of t by Lemma 1 proved above. Then there exist t̄ ∈ (t′, t′′) and

a sequence {εn} which converges to 0 from the right hand side, εn > 0 and εn → 0 as

n → ∞, such that

lim
n→∞

Ũ(Ω − f i(t̄ + εn)) − Ũ(Ω − f i(t̄))

εn
< 0.2

Since the utility function Ũ is differentiable, the equation becomes

L∑
l=1

∂Ũ (Ω − f i(t̄))

∂xl
lim

n→∞
−f i

l (t̄ + εn) + f i
l (t̄)

εn
< 0.

Since f is Pareto efficient and Ũ represents the homothetic preference R̃ of all agents but

i, (∂Ũ(Ω−f i(t))
∂x1

, . . . , ∂Ũ(Ω−f i(t))
∂xL

) is parallel to (∂U i(f i(t);t)
∂x1

, . . . , ∂U i(f i(t);t)
∂xL

). Therefore we have

L∑
l=1

∂U i(f i(t̄); t̄)

∂xl
lim

n→∞
f i

l (t̄ + εn) − f i
l (t̄)

εn
> 0,

hence,

lim
n→∞

U i(f i(t̄ + εn); t̄) − U i(f i(t̄); t̄)

εn
> 0,

2To the contrary, suppose that limn→∞
Ũ(Ω−fi(t̄+εn))−Ũ(Ω−fi(t̄))

εn
≥ 0 for any t̄ ∈ (t′, t′′) and any

sequence {εn} converging to 0 from right hand side. It clearly contradicts to that Ũ(Ω − f i(·)) is a
continuous function and Ũ(Ω − f i(t′)) > Ũ(Ω − f i(t′′)).
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This implies U i(f i(t̄ + εn); t̄) > U i(f i(t̄); t̄) with sufficiently large n because εn > 0.

This violates the strategy-proofness of f because agent i whould manipulate f by reporting

Rt̄+εn when his preference is Rt̄.

Next, we consider the case where Ũ(Ω − f i(t′)) < Ũ(Ω − f i(t′′)). Then there exist

t̄ ∈ (t′, t′′) and a sequence {εn} which converges to 0 from the left hand side, εn < 0 and

εn → 0 as n → ∞, such that

lim
n→∞

Ũ(Ω − f i(t̄ + εn)) − Ũ(Ω − f i(t̄))

εn
> 0.

By the same discussion, we have

lim
n→∞

U i(f i(t̄ + εn); t̄) − U i(f i(t̄); t̄)

εn

< 0.

This implies U i(f i(t̄ + εn); t̄) > U i(f i(t̄); t̄) with sufficiently large n because εn < 0. This

again violates the strategy-proofness of f .

4 Preliminary result II

In this section we show an application of Maskin monotonic transformation. Consider a

preference R ∈ R and a consumption bundle x ∈ RL
+. A preference R̄ is called Maskin

monotonic transformation of R at x if x̄ ∈ UC(R̄, x) and x̄ 	= x implies x̄PRx. If an agent

receives the commodity bundle x at a profile R, strategy-proofness implies that this agent

receives the same commodity bundle when his preference is subject to a Maskin monotonic

transformation at x.

Lemma 3. Suppose that f : RN → X is a strategy-proof social choice function. For

any R ∈ RN and any i ∈ N, if R̄i ∈ R is a Maskin monotonic transformation of Ri at

f i(R), then f i(R̄i,R−i) = f i(R).

In addition to the preference R and the consumption bundle x, consider another

preference R̃ and another consumption bundle x̃. If these are as in Figure 1, it would be

possible to image a preference which is a Maskin monotonic transformation of R at x and

also a Maskin monotonic transformation of R̃ at x̃. Next proposition shows when such a

transformation exists. For x ∈ RL
+ \ 0, we let [x] denote the ray in the consumption set

RL
+ starting from the origin and passing through x. Keep in mind two preliminary facts

about homothetic preferences.

Lemma 4. For R, R̃ ∈ R, if UC(x; R) = UC(x; R̃) at a consumption bundle x ∈ RL
++,

then R and R̃ are the same preference.

Lemma 5. If R̃ ∈ R is a Maskin monotonic transformation of R ∈ R at x ∈ RL
++, then

R̃ is a Maskin monotonic transformation of R at any non-zero consumption x′ ∈ [x].
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Proposition 2. For any R, R̃ ∈ R and any x, x̃ ∈ RL
++, if x ∈ P (I(x; R)

⋂
[x̃]; R̃), then

there exists a preference R̄ ∈ R that is a Maskin monotonic transformation of R at x and

of R̃ at x̃.

Proof. Figure 2 (i) describes an example of R, R̃, x and x̃ satisfying the condition in

the proposition. We first consider a special case where x̃ ∈ P (x; R) and x ∈ P (x̃; R̃), and

observe that there exists a preference R̄ which is a Maskin monotonic transformation of

R at x and of R̃ at x̃. Figure 2 (ii) draws this situation. It is easy to image a desired

Maskin monotonic transformation. A rigorous discussion follows.

Suppose x̃ ∈ P (x; R) and x ∈ P (x̃; R̃). We pick a preference R′ ∈ R that is a Maskin

monotonic transformation of R at x and x̃ ∈ P (x; R′). We also pick a preference R̃′ ∈ R
that is a Maskin monotonic transformation of R̃ at x̃ and x ∈ P (x̃; R̃′). We then construct

a strictly convex closed set Y ⊂ RL
+ such that (i) Y ⊂ UC(x; R′)

⋂
UC(x̃; R̃′); (ii) for

any x ∈ Y , x + RL
+ ⊂ Y ; (iii) the boundary of Y , ∂Y , is smooth; (iv) x ∈ ∂Y , and

UC(x; R′) and Y have the same hyperplane at x; and (v) x̃ ∈ ∂Y , and UC(x̃; R̃′) and

Y have the same hyperplane at x̃. To obtain such a set Y , for example, let Bε(y) be

a closed ball with center y and radius ε. Fix sufficiently small ε and let Y be a sum of

Bε(y) over y’s such that Bε(y) ⊂ UC(x; R′)
⋂

UC(x̃; R̃′). That is, Y = {x ∈ RL
+|x ∈

Bε(y) for some y such that Bε(y) ⊂ UC(x; R′)
⋂

UC(x̃; R̃′)}. If the ε is sufficiently small,

Y is a desirable set satisfying (i)–(v). We let R̄ ∈ R be the preference such that Y is the

upper contour set of R̄ at x (and x̃). As in Lemma 4, R̄ is determined uniquely. It is

clear from the construction that R̄ is a Maskin monotonic transformation of R at x and

of R̃ at x̃.

We next consider a general case. Suppose R, R̃ ∈ R and x, x̃ ∈ RL
++ satisfy the

condition in the proposition. We pick x̂ ∈ [x̃] such that x̂ ∈ P (x; R) and x ∈ P (x̂; R̃).

For example, pick x̂ ∈ [x̃] which is preferred to x with respect to R and sufficiently close

to I(x; R)
⋂

[x̃]. This x̂ clearly satisfies x̂ ∈ P (x; R) and x ∈ P (x̂; R̃). From the above

discussion there exists a preference R̄ ∈ R that is a Maskin monotonic transformation of

R at x and of R̃ at x̂. Then, as in Lemma 5, R̄ is also a Maskin monotonic transformation

of R̃ at x̃ because x̃ and x̂ are on the same ray.

5 Proof of Theorem 1

Suppose that f is a Pareto efficient and strategy-proof social choice function which guar-

antees positive consumptions. When all agents have the same preference, all agents

should be allocated positive portions of Ω: f i(R) = λiΩ with some 0 < λi < 1 for

R = (R, . . . , R). Pick two different preferences R and R̃, and consider the allocations

given by f at R = (R, . . . , R) and R̃ = (R̃, . . . , R̃).

We let A(x; R) denote the set of consumption bundle x′ such that Ω−x′ is indifferent
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to Ω − x with respect to R

A(x; R) = {x′ ∈ RL
+|(Ω − x′)IR(Ω − x)}

and let A+(x; R) = {x′ ∈ RL
+|(Ω − x)PR(Ω − x′)}, which is the upper right part of the

consumption set partitioned by A(x; R) and let A−(x; R) = {x′ ∈ RL
+|(Ω−x′)PR(Ω−x)},

which is the lower left part.

Without loss of generality we assume f 1(R) ≥ f 1(R̃). See the Edgeworth Box de-

scribed in Figure 3, where the consumption of agent 1 is measured from the lower left

vertex and sum of consumptions of the other agents is measured from the upper right ver-

tex. We pick x̄1 ∈ A(f 1(R̃); R̃) in the neighborhood of f 1(R̃) so that x̄1 is in A(f 1(R); R)−

and x̄1 is not parallel to Ω. Next, let x′ be the intersection of A(f 1(R); R) and the segment

[x̄1, Ω] and pick x̂1 ∈ A(f 1(R); R) in the neighborhood of x′ so that x̂1 ∈ A(x′; R̃)−.

As we observed in Proposition 1, agent 1’s consumption should be on A(f 1(R); R)

(resp. A(f 1(R̃); R̃)) when other agents’ preference is R (resp. R̃) and agent 1’s prefer-

ence is changed. Let R̄ and R̂ be agent 1’s preferences such that f 1(R̄,R−1) = x̄1 and

f 1(R̂, R̃−1) = x̂1.

We let Ř be a preference which is a Maskin monotonic transformation of R at Ω− x̂1

and of R̃ at Ω − x̄1. Observe that our choice of x̄1 and x̂1 ensures the condition in

Proposition 2: Ω− x̄1 ∈ P (I(Ω− x̂1; R)
⋂

[Ω− x̄1]; R̃) and supports the existence of such

a Maskin monotonic transformation.

We observe that the consumption allocated to agent 1 should not be changed when

the preferences of agents other than agent 1 are changed to Ř from the profile (R̄,R−1)

or from (R̂, R̃−1)

Since f is Pareto efficient and positive consumption guarantee, at the profile (R̄,R−1),

agent 1 receives x̄1 and each of the other agents i = 2, . . . , N , receives a positive portion

of Ω − x̄1: λ̄i(Ω − x̄1), i = 2, . . . , N , where 0 < λ̄i < 1 and
∑N

i=2 λ̄i = 1. Note that since

we have chosen x̄1 not parallel to Ω, the vectors x̄1 and Ω− x̄1 are independent. Now, let

us change agent 2’s preference to Ř from R. Write the new profile as (R̄, Ř,R−2) where

agent 1’s preference is R̄, agent 2’s Ř and the others’ R.

Since Ř is a Maskin monotonic transformation of R at Ω − x̄1, it is so at agent 2’s

consumption as observed in Lemma 5. Therefore agent 2’s consumption should not be

changed and her gradient vector at the consumption should not be changed. Because

of the Pareto efficiency, all agents’ gradient vectors at their consumptions should be the

same. Hence, all agents have the same gradient vector at the both profiles (R̄,R−1) and

(R̄, Ř,R−2). Since the preferences are homothetic, the equality of the gradient vectors

implies that each agent’s consumptions at the both profiles should be parallel. That is, at

the new profile, agent 1’s consumption is parallel to x̄1 and the other agents’ consumptions

are parallel to Ω−x̄1. Because of the Pareto efficiency, the consumptions at the new profile

should sum up to the total endowment Ω. Then agent 1’s consumption should be still x̄1.
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Next we further change agent 3’s preference to Ř from R. Discussions are the same.

Because R̃ is a Maskin monotonic transformation of R at agent 3’s consumption, agent

3’s consumption at the new profile (R̄, Ř, Ř,R−3), where agent 1’s preference is R̄, agent

2’s and 3’s Ř and the others’ R is same as the consumption at the old profile (R̄, Ř,R−2).

Hence, the gradient vectors at the consumptions are also the same at the both profiles.

Then, all agents have the same gradient vector at their consumptions, and hence their

consumptions are parallel at the both profiles (R̄, Ř, Ř,R−3) and (R̄, Ř,R−2). That is,

at the new profile, the consumption of agent 1 is again parallel to x̄1 and the others’ are

parallel to Ω − x̄1. Then agent 1’s consumption at the profile (R̄, Ř, Ř,R−3) should be

still x̄1.

By applying the discussions repeatedly until all preferences but agent 1’s are changed to

Ř, we finally obtain that f 1(R̄, Ř−1) = x̄1 where Ř−1 = (Ř, . . . , Ř) ∈ RN−1. Discussions

are the same for the profile (R̂, R̃−1) and we obtain f 1(R̂, Ř−1) = x̂1.

Finally, remember our choice of x̂1 and x̄1. From the construction, x′ is strictly

preferred to x̄ with respect to any preference and x̂1 can be chosen arbitrarily close to

x′. Therefore x̂1 could have been chosen to be preferred to x̄1 with respect to agent 1’s

preference R̄. This violates the strategy-proofness of f . This ends the proof of Theorem

1.

6 Proof of Theorem 2

We let f be a Pareto efficient, strategy-proof and non-bossy social choice function.

We first pick a preference R and prove that there exists some agent i who is allocated

the total endowment when all agents have the same preference R: f i(R) = Ω where R =

(R, . . . , R). To the contrary, suppose that there are at least two agents who receive non-

zero consumptions at the profile R = (R, . . . , R). Without loss of generality we assume

agent 1 is one of them: f 1(R) 	= {0, Ω}. When all agents have the same preference, the

consumption of any agent should be parallel to Ω including the case of zero consumption

because of Pareto efficiency of f . Therefore f i(R) = λiΩ where 0 ≤ λi < 1 for any i ∈ N

and 0 < λ1 < 1 especially.

We let R̃ be a Maskin monotonic transformation of R at λ1Ω. Note that R̃ is then

a Maskin Monotonic transformation of R at any consumption parallel to Ω as observed

in Lemma 5. Replace the preference R to R̃ for all agents but agent 1. Because of non-

bossiness, this replacement should not affect the allocation: Whether agent j receives

positive or zero consumption, the replacement of his preference to R̃ from R should not

change his consumption, and hence the allocation should not be affected under the non-

bossiness. Thus we have f(R) = f(R, R̃, . . . , R̃).

The following discussion is almost the same as that of Theorem 1. In fact it is much
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easier by the non-bossiness. See the Edgeworth Box drawn in Figure 4, where the con-

sumption of agent 1 is measured from the lower left vertex and the sum of consumptions

of the other agents is measured from the upper right vertex. As we did in the proof of

Theorem 1, we pick x̄1 ∈ A(f 1(R); R̃) in the neighborhood of f 1(R) so that x̄1 is in

A(f 1(R); R)− and x̄1 is not parallel to Ω. Next, let x′ be the intersection of A(f 1(R); R)

and the segment [x̄1, Ω] and pick x̂1 ∈ A(f 1(R); R) in the neighborhood of x′ so that

x̂1 ∈ A(x′; R̃)−.

As proved in Proposition 1, any change of agent 1’s preference from the preference

profile (R, R, . . . , R) (or (R, R̃, . . . , R̃)) does not affect the utility level of the sum of

others’ consumptions with respect to the preference R (or R̃). Let R̄ and R̂ be preferences

of agent 1 such that f 1(R̄,R−1) = x̄1 and f 1(R̂, R̃−1) = x̂1.

We let Ř be a preference which is a Maskin monotonic transformation of R at Ω− x̂1

and of R̃ at Ω − x̄1. Our choice of x̄1 and x̂1 ensures the condition in Proposition 2:

Ω − x̄1 ∈ P (I(Ω − x̂1; R)
⋂

[Ω − x̄1]; R̃) and supports the existence of such a Maskin

monotonic transformation.

Because of the non-bossiness, the allocation should not be affected by replacing the

preferences of agents other than agent 1 to Ř from the profile (R̄,R−1) or from (R̂, R̃−1).

Therefore we have f 1(R̄, Ř−1) = x̄1 and f 1(R̂, Ř−1) = x̂1 where Ř−1 = (Ř, . . . , Ř) ∈
RN−1.

From the construction, x′ is strictly preferred to x̄ with respect to any preference

and x̂1 can be chosen arbitrarily close to x′. Therefore x̂1 could have been chosen to be

preferred to x̄1 with respect to agent 1’s preference R̄. This violates the strategy-proofness

of f . Thus there exists some agent i ∈ N who is allocated the total endowment at the

profile R = (R, . . . , R).

We have proved that f i(R) = Ω for some i and f j(R) = 0 for j 	= i at the profile

R = (R, . . . , R). This agent i should be a dictator. Change any agent’s preference

arbitrarily. This change does not affect the agent’s consumption because of the strategy-

proofness of f , and hence this change does not affect the allocation because of the non-

bossiness. Therefore we have f i(R′) = Ω for any preference profile R′ ∈ RN . That is, f

is dictatorial. This ends the proof of Theorem 2.

7 Proof of Theorem 3

We first prove a lemma.

Lemma 6. Let N = 3 and f be a Pareto efficient and strategy-proof social choice

function. Let R = (R, R, R) and R̄ = (R̄, R̄, R̄) be preference profiles where all agents

have the same preferences R and R̄ respectively. If one agent is given the total endowment
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Ω by f at R and another agent is given Ω at R̄, then there exists no preference R̃ such

that the other agent is given Ω at R̃ = (R̃, R̃, R̃).

Proof. Without loss of generality we assume f(R) = (Ω, 0, 0) and f(R̄) = (0, Ω, 0) and

prove f(R̃) 	= (0, 0, Ω). To the contrary, we suppose f(R̃) = (0, 0, Ω).

f(R) = (Ω, 0, 0) implies f(R̄, R, R) = (Ω, 0, 0) because of the strategy-proofness of f .

This, again by the strategy-proofness of f , implies f 2(R̄, R̄, R) = 0. On the other hand,

f(R̄) = (0, Ω, 0) implies f 3(R̄, R̄, R) = 0. Therefore we obtain f(R̄, R̄, R) = (Ω, 0, 0),

hence f(R̃, R̄, R) = (Ω, 0, 0).

By the same discussions, f(R̃) = (0, 0, Ω) implies f(R̃, R̃, R̄) = (0, 0, Ω), which implies

f 2(R̃, R̄, R̄) = 0. f(R̄) = (0, Ω, 0) implies f 1(R̃, R̄, R̄) = 0. Therefore f(R̃, R̄, R̄) =

(0, 0, Ω), hence f(R̃, R̄, R) = (0, 0, Ω). This is a contradiction.

We next prove a technical lemma. Consider a two-agent economy with agent i, the

other agent j, and the total endowment Ω. Let X2 = {(xi, xj) ∈ R2L
+ |xi + xj ≤ Ω} denote

the set of feasible allocation of the economy. Let POi(Ri, Rj) denotes the set of Pareto

efficient allocations (xi, xj) = (xi, Ω − xi) ∈ X2 with respect to agent i’s preference Ri

and agent j’s Rj. For (x̄i, Ω − x̄i) ∈ POi(Ri, Rj), define

Bi(Ri, Rj , x̄i) =

{
x ∈ RL

+

∣∣∣∣∣ x ∈ I(x̄i, Ri),

(sx, Ω − sx) ∈ POi(Ri, Rj) for some s ≥ 1

}
.

See Figure 5. Bi(Ri, Rj , x̄i) is the set of agent i’s consumption x which is indifferent to x̄i

with respect to Ri and (sx, Ω − sx) with some s ≥ 1 is a Pareto efficient allocation with

respect to Ri and Rj.

Further we let C ⊂ RL
+ be a closed set such that C

⋂
Bi(Ri, Rj, x̄i) = x̄i and let

R(Ri, Rj, x̄i, C) be a set of agent i’s preference R such that the set of consumption which

is preferred to x̄i with respect to R and not strictly preferred to x̄i with respect to Ri is

included in the closed set C.

Lemma 7. Let N = 3 and f be a Pareto efficient and strategy-proof social choice

function. Suppose that f 1(R′, R̃, R̃) /∈ {0, Ω}, f 2(R′, R̃, R̃) /∈ {0, Ω} and f 3(R′, R̃, R̃) = 0.

Let t �→ Rt be a continuous map such that Rt̄ = R̃ and Rt ∈ R(R̃, R′, f 2(R′, R̃, R̃), C) for

t 	= t̄ where C ⊂ RL
+ is a closed set satisfying C

⋂
B2(R̃, R′; f 2(R′, R̃, R̃)) = f 2(R′, R̃, R̃).

Then f 2(R′, Rt, R̃) → f 2(R′, R̃, R̃) as t → t̄.

Note the difference between this lemma and Lemma 1. If R′ = R̃, then because of

Lemma 1, f 2(R′, Rt, R̃) is a continuous function of t with any continuous map t �→ Rt. In

this lemma, where R′ and R̃ might be different, we claim the continuity of f 2(R′, Rt, R̃)

only at t = t̄ satisfying Rt̄ = R̃ under the condition that f 3(R′, R̃, R̃) = 0 and the technical

choice of the map t → Rt ∈ R(R̃, R′, f 2(R′, R̃, R̃), C).
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Proof. Letting f(R′, Rt, R̃) → x̃ = (x̃1, x̃2, x̃3) as t → t̄, all we have to show is x̃2 =

f 2(R′, R̃, R̃). The discussions are the same as those in the proof of Lemma 1 to prove that

x̃2 is indifferent to f 2(R′, R̃, R̃) with respect to the preference R̃: x̃2 ∈ I(f 2(R′, R̃, R̃); R̃),

and that x̃ is a Pareto efficient allocation for the preference profile (R′, R̃, R̃).

Note that when both agents 2 and 3 have the same preference R̃, their consumptions

x̃2 and x̃3 should be parallel (including the case where x̃3 = 0), and (x̃2 + x̃3, x̃1) should

be a Pareto efficient allocation in the two-agent economy with agent 2 of preference R̃

and the other (agent 1) of preference R′: (x̃2 + x̃3, x̃1) = (sx̃2, Ω−sx̃2) ∈ PO2(R̃, R′) with

some s ≥ 1.

On the other hand, since f 3(R′, R̃, R̃) = 0 by assumption, (f 2(R′, R̃, R̃), f 1(R′, R̃, R̃))

is also a Pareto efficient allocation in the two-agent economy: (f 2(R′, R̃, R̃), f 1(R′, R̃, R̃)) =

(f 2(R′, R̃, R̃), Ω − f 2(R′, R̃, R̃)) ∈ PO2(R̃, R′).

From these discussions, we have x̃2 ∈ B2(R̃, R′, f 2(R′, R̃, R̃)). Now remember our

choice of t �→ Rt ∈ R(R̃, R′, f 2(R′, R̃, R̃), C) with a closed set C which has no intersection

with B2(R̃, R′, f 2(R′, R̃, R̃)) but f 2(R′, R̃, R̃). Because of the strategy-proofness of f ,

f 2(R′, Rt, R̃) should be preferred to f 2(R′, R̃, R̃) with respect to Rt and should not be

strictly preferred to f 2(R′, R̃, R̃) with respect to R̃. Therefore f 2(R′, R̃, R̃) should be in

the closed set C. Hence at the limit of t → t̄, x̃2 should be still in C. Thus we obtain

x̃2 = f 2(R′, R̃, R̃).

We divide the proof of Theorem 3 into two parts

Part 1. In this part, we prove that if f is a Pareto efficient and strategy-proof social

choice function, then some agent should be allocated the total endowment Ω at each

profile (R, R, R) where all agents have the same preference. This part consists of 5 steps.

(1) We pick a preference R such that at least two agents receive non-zero consumptions

at the profile (R, R, R).3 In this step, we show that there exists another preference R̃ such

that at least two agents receive non-zero consumptions at the profile (R̃, R̃, R̃).

We suppose that there exists no such R̃ different from R that at least two agents

receive non-zero consumptions at R̃ = (R̃, R̃, R̃). That is, we suppose that some agent

receives the total endowment Ω at each R̃ = (R̃, R̃, R̃), R̃ 	= R.

As observed in Lemma 6, all agents 1,2 and 3 cannot be the receivers of the total

endowment when all agents have same preferences. Without loss of generality, we assume

that agent 3 receives zero consumption at any profiles R̃ = (R̃, R̃, R̃), R̃ 	= R; agent 1 or 2

receives the total endowment at each profiles R̃ = (R̃, R̃, R̃), R̃ 	= R; and agent 1 receives

the total endowment at at least one such profile. We consider the following two cases

separately and show contradictions: (i) f 3(R, R, R) = 0 and (ii) f 3(R, R, R) /∈ {0, Ω}.
3If there exists no such preference, then some agent receives the total endowment at each profile where

all agents have the same preference.
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(i) We conider the case f 3(R, R, R) = 0. Let R′ be a preference such that f(R′, R′, R′) =

(Ω, 0, 0). Then f(R′′, R′, R′) = (Ω, 0, 0) for any R′′, and hence f 2(R′′, R′′, R′) = 0 because

of the strategy-proofness of f . On the other hand, if R′′ 	= R, then f 3(R′′, R′′, R′′) = 0 by

assumption, and hence f 3(R′′, R′′, R′) = 0 because of the strategy-proofness of f . There-

fore, if R′′ 	= R, then f(R′′, R′′, R′) = (Ω, 0, 0). Then, f(R̄, R′′, R′) = (Ω, 0, 0) for any

R̄ and any R′′ 	= R, and hence f 3(R̄, R′′, R) = 0 because of the strategy-proofness of f .

Remember that at the profile (R, R, R) agent 3 receives zero consumption, and agents 1

and 2 receive non-zero consumptions. This implies that f(·, ·, R) defined on the preference

profile set R × R is a Pareto efficient, strategy-proof, and non-dictatorial social choice

function in the two-agent economy with the agents 1 and 2. This is a contradiction.

(ii) We consider the case f 3(R, R, R) /∈ {0, Ω}. As in the above case, we let R′ be

a preference such that f(R′, R′, R′) = (Ω, 0, 0) and obtain f(R̄, R′′, R′) = (Ω, 0, 0) for

any R̄ and any R′′ 	= R. Note that this implies f 2(R̄, R, R′) = 0 for any R̄ because of

the strategy-proofness of f , and hence f 2(R, R, R′) = 0 especially. f 3(R, R, R) /∈ {0, Ω}
implies f 3(R, R, R′) /∈ {0, Ω}, and this implies f 1(R, R, R′) /∈ {0, Ω} because consumer 2

receives zero consumption at the profile, and hence f 1(R̄, R, R′) /∈ {0, Ω} for any R̄. Thus

at the profile (R̄, R, R′) for any R̄, agent 2 receives zero-consumption and agents 1 and 3

receive non-zero consumptions. Hence, f 3(R̄, R, R̂) 	= 0 for any R̄ and any R̂.

Now suppose there exists R̂ different from R′ such that f(R̂, R̂, R̂) = (0, Ω, 0). Then

by the symmetric discussion, we have f(R′′, R̄, R̂) = (0, Ω, 0) for any R̄ and any R′′ 	= R.

Especially, f(R′′, R, R̂) = (0, Ω, 0) for any R′′ 	= R. This contradicts to the conclusion in

the above paragraph.

From the discusssions in the above paragraphs, we have f(R′, R′, R′) = (Ω, 0, 0) for

any R′ 	= R and f 2(R̄, R, R′) = 0, f 1(R̄, R, R′) /∈ {0, Ω} and f 3(R̄, R, R′) /∈ {0, Ω} for

any R̄ . This implies that f(·, R, ·) defined on the profile set R × (R \ R) is a Pareto

efficient, strategy-proof, and positive consumption guarantee social choice function in the

two-agent economy with the agents 1 and 3. This is a contradiction.4

(2) Since there are three agents, there exists at least one agent who receives non-zero

consumption at the both profile R = (R, R, R) and R̃ = (R̃, R̃, R̃). Without loss of

generality we let agent 1 be the consumer: f 1(R) /∈ {0, Ω} and f 1(R̃) /∈ {0, Ω}. Without

loss of generality we assume f 1(R) ≥ f 1(R̃).

We change the preference of agent 1 as we did in the proof of Theorem 1. Remember

Figure 3. We pick x̄1 ∈ A(f 1(R̃); R̃) in the neighborhood of f 1(R̃) so that x̄1 is in

A(f 1(R); R)− and x̄1 is not parallel to Ω. Next, let x′ be the intersection of A(f 1(R); R)

and the segment [x̄1, Ω] and pick x̂1 ∈ A(f 1(R); R) in a neighborhood of x′ so that

4This especially implies that f(·, R, ·) is a Pareto efficient, strategy-proof, and non-dictatorial social
choice function on a local domain of Cobb-Douglas preferences, which contradicts to the result proved
by Hashimoto (2008) or Momi (2011).
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x̂1 ∈ A(x′; R̃)−. As observed in Proposition 1, there exist consumer 1’s preferences R̄ and

R̂ such that f 1(R̄,R−1) = f 1(R̄, R, R) = x̄1 and f 1(R̂, R̃−1) = f 1(R̂, R̃, R̃) = x̂1.

(3) We focus on the profile (R̄, R, R) achieved in the previous step. Since f 1(R̄, R, R) =

x̄1 /∈ {0, Ω}, agent 2 or agent 3 receives non-zero consumption at the profile. In this

step, we observe that even if one of them receives zero consumption at the profile, there

exists a new profile in the neighborhood of (R̄, R, R) such that all agents receive non-zero

consumptions. We also observe that agent 1’s new consumption is then close to x̄1 and

not parallel to the others’ new consumptions

(i) We first consider new profiles (R′, R, R) where agent 1’s preference R′ is a Maskin

monotonic transformation of R̄ at x̄1 and is close to R̄. If agents 2 and 3 receive non-zero

consumptions at such a profile, we achieve the desired result.

In this situation, since R′ is a Maskin monotonic transformation of R̄ at x̄1, f 1(R′, R, R) =

x̄1, and that f 2(R′, R, R) and f 3(R′, R, R) are both parallel to Ω− x̄1 which is not parallel

to x̄1.

(ii) We suppose that there exists no such profile (R′, R, R) with the Maskin monotonic

transformation R′ in the neighborhood of R̄. Without loss of generality, we let R′ and

R′′ be preferences such that (a) R′ and R′′ are Maskin monotonic transformations of R̄ at

x̄1 and are close to R̄, (b) R′′ is a Maskin monotonic transformation of R′ at x̄, and (c)

f 3(R′, R, R) = 0 and f 3(R′′, R, R) = 0. Note that then f 1(R′, R, R) = f 1(R′′, R, R) = x̄1

and f 2(R′, R, R) = f 2(R′′, R, R) = Ω − x̄1.

Remembering Lemma 7, we let t �→ Rt be a continuous map such that Rt̄ = R, Rt ∈
R(R,R′, f 2(R′, R, R), C) for t 	= t̄ where C is a closed set satisfying C

⋂
B2(R, R′, f 2(R′, R, R)) =

f 2(R′, R, R), and the gradient vector of Rt, t 	= t̄ at f 2(R′, R, R) is different from that

of R. We consider the profiles (R′, Rt, R) and (R′′, Rt, R). Suppose there exists no t

in the neighborhood of t̄ such that f 3(R′, Rt, R) 	= 0 or f 3(R′′, Rt, R) 	= 0. Then, as

shown in Proposition 1, f 1(R′, Rt, R) (resp. f 1(R′′, Rt, R)) is indifferent to x̄1 with re-

spect to the preference R′ (resp. R′′) for t in the neighborhood of t̄ because the total

endowment Ω should be allocated over the two agents 1 and 2. This, however, implies

that f 1(R′′, Rt, R) is strictly preferred to f 1(R′, Rt, R) with respect to the preference R′

because R′′ is a Maskin monotonic transformation of R′ at x̄1. This contradicts to the

strategy-proofness of f . Therefore there should exists t̂ in any neighborhood of t̄ such

that f 3(R′, Rt̂, R) 	= 0 or f 3(R′′, Rt̂, R) 	= 0.

We focus on the case f 3(R′, Rt̂, R) 	= 0 for t̂ sufficiently close to t̄ and show that

f 1(R′, Rt̂, R) is close to x̄1 and parallel to neither f 2(R′, Rt̂, R) nor f 3(R′, Rt̂, R). Because

of Lemma 7, f 2(R′, Rt̂, R) is close to f 2(R′, R, R) = Ω− x̄1 and the gradient vectors at the

consumptions are also close to each other. The closeness of the gradient vectors implies

that f 1(R′, Rt̂, R) is on a ray close to [x̄1] because of the homoceticity of R′. Further, the
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closeness between Rt̂ and R implies that f 3(R′, Rt̂, R) is on a ray close to [f 2(R′, Rt̂, R)]

hence is on a ray close to [Ω− x̄1]. These implies that f 1(R′, Rt̂, R) is close to x̄1 because

f 1(R′, Rt̂, R) + f 2(R′, Rt̂, R) + f 3(R′, Rt̂, R) = Ω, where f 1(R′, Rt̂, R) is on the ray close

to [x̄1], f 2(R′, Rt̂, R) and f 3(R′, Rt̂, R) are on the rays close to [Ω − x̄1].

The conclusion of this step follows. There exist preferences R̄1, R2 and R3 respec-

tively in the neighborhoods of R̄, R, and R such that all agents are allocated non-zero

consumptions at the profile (R̄1, R2, R3) and f 1(R̄1, R2, R3) is close to f 1(R̄, R, R) = x̄1

and is parallel to neither f 2(R̄1, R2, R3) nor f 3(R̄1, R2, R3).

(4) The discussion is the same for the profile (R̂, R̃, R̃) achieved in the second step.

There exist preferences R̂1, R̃2 and R̃3 respectively in the neighborhoods of R̂, R̃, and R̃

such that all consumers are allocated non-zero consumptions at the profile (R̂1, R̃2, R̃3)

and f 1(R̂1, R̃2, R̃3) is close to f 1(R̂, R̃, R̃) = x̂1 and is parallel to neither f 2(R̂1, R̃2, R̃3)

nor f 3(R̂1, R̃2, R̃3).

(5) Let Ř2 be a Maskin monotonic transformation of R2 at f 2(R̄1, R2, R3) and of R̃2 at

f 2(R̂1, R̃2, R̃3). Note that there exists a Maskin monotonic transformation of R at Ω− x̄1

and of R̃ at Ω− x̂1 as we observed in the proof of Theorem 1. Then there exists a desired

transformation Ř2 for the preferences R2 and R̃2 close to R̃ and R respectively and the

consumptions f 2(R̄1, R2, R3) and f 2(R̂1, R̃2, R̃3) on the rays close to [Ω− x̄1] and [Ω− x̂1]

respectively.

By the discussion similar to that in the proof of Theorem 1, this transformation does

not change consumptions of any agents. At the profile (R̄1, R2, R3) for example, the trans-

formation of agent 2’s preference R2 to Ř2 does not change her consumption and her gra-

dient vector at the consumption. Therefore f 1(R̄1, Ř2, R3) and f 3(R̄1, Ř2, R3) are parallel

to f 1(R̄1, R2, R3) and f 3(R̄1, R2, R3) respectively and f 1(R̄1, Ř2, R3) + f 3(R̄1, Ř2, R3) =

f 1(R̄1, R2, R3) + f 3(R̄1, R2, R3) holds. Since f 1(R̄1, R2, R3) and f 3(R̄1, R2, R3) are inde-

pendent vectors, this is satisfied only when f 1(R̄1, Ř2, R3) = f 1(R̄1, R2, R3) and f 3(R̄1, Ř2, R3) =

f 3(R̄1, R2, R3).

Next, let Ř3 be a Maskin monotonic transformation of R3 at f 3(R̄1, Ř2, R3) and of

R̃3 at f 3(R̂1, Ř2, R̃3). The existence of this transformation is also supported by the fact

that R3 and R̃3 are close to R and R̃ respectively and the consumptions f 3(R̄1, Ř2, R3) =

f 3(R̄1, R2, R3) and f 3(R̂1, Ř2, R̃3) = f 3(R̂1, R̃2, R̃3) are respectively on the rays close to

[Ω − x̄1] and [Ω − x̂1]. Again this transformation does not change consumptions of any

agents.

Thus we have that f 1(R̄1, Ř2, Ř3) = f 1(R̄1, R2, R3), which is close to x̄1 and f 1(R̂1, Ř2, Ř3) =

f 1(R̂1, R̃2, R̃3), which is close to x̂1. This contradicts to the strategy-proofness of f be-

cause x̂1 could have been chosen to be preferred to x̄1 with respect to the preference R̄ in
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the second step, and R̄1 could have been chosen to be sufficiently close to R̄ in the third

step. This ends the proof of Part 1.

Part 2. We have proved that one agent receives the total endowments at each preference

profile R = (R, R, R) where all agents have the same preference. Because of Lemma 6,

there exists an agent who receives zero consumption at any such profile R = (R, R, R).

In this part, we prove that the allocation given by f should depend only on the preference

of this agent.

Without loss of generality we assume that agent 3 is the agent receiving zero con-

sumptions at such profiles: f 3(R, R, R) = 0 for any R.

Pick a preference R. We know f(R, R, R) is (Ω, 0, 0) or (0, Ω, 0). We prove that if

f(R, R, R) = (Ω, 0, 0), then f(R̃, R̄, R) = (Ω, 0, 0) for any R̄, R̃ ∈ R, and symmetrically

if f(R, R, R) = (0, Ω, 0), then f(R̃, R̄, R) = (0, Ω, 0) for any R̄, R̃ ∈ R. That is, consumer

1 or 2 is allocated the total endowment depending on agent 3’s preference.

We consider the case f(R, R, R) = (Ω, 0, 0). This implies f(R̄, R, R) = (Ω, 0, 0). Hence

f 2(R̄, R̄, R) = 0 for any R̄. On the other hand, f 3(R̄, R̄, R̄) = 0 implies f 3(R̄, R̄, R) = 0.

Thus we have f(R̄, R̄, R) = (Ω, 0, 0). This implies f(R̃, R̄, R) = (Ω, 0, 0) for any R̃.

The discussion is symmetric for the case f(R, R, R) = (0, Ω, 0). This ends the proof

of Theorem 3.

8 Proof of Corollary 1

We suppose f : R̄3 → X is a Pareto efficient and strategy-proof social choice function.

Then it should be Pareto efficient and strategy-proof on the restricted domain R3. In

Theorem 3, we proved that it should be an SS mechanism. Without loss of generality we

assume that agent 1 or agent 2 receives the total endowment depending on the shape of

agent 3’s preference. Thus agent 3’s preference domain R is divided into R1 and R2, and

for any R1, R2, R3 ∈ R,

f(R1, R2, R3) = (Ω, 0, 0) if R3 ∈ R1,

f(R1, R2, R3) = (0, Ω, 0) if R3 ∈ R2.

Because of the strategy-proofness with respect to agent 2, f 2(R1, R2, R3) = 0 for any

R1 ∈ R, R2 ∈ R̄ , R3 ∈ R1.

On the other hand, again because of the strategy-proofness with respect to agent 2,

f(R1, R2, R3) = (0, Ω, 0) for any R1 ∈ R, R2 ∈ R̄, R3 ∈ R2. Then, because of the

strategy-proofness with respect to agent 3, f 3(R1, R2, R3) = 0 for any R1 ∈ R, R2 ∈ R̄,

R3 ∈ R1.
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From these results we have f(R1, R2, R3) = (Ω, 0, 0) for any R1 ∈ R, R2 ∈ R̄, R3 ∈
R1, and, because of the strategy-proofness of agent 1, f(R1, R2, R3) = (Ω, 0, 0) for any

R1, R2 ∈ R̄ and R3 ∈ R1.

This implies that f 3(R1, R2, R3) = 0 for any R1, R2, R3 ∈ R̄ because of the strategy

proofness with respect to agent 3. Therefore for any fixed R3 ∈ R̄, f(·, ·, R3) should be a

Pareto efficient and strategy-proof social choice function for the two-agent economy with

agents 1 and 2. Then it should be a dictatorial mechanism. That is, depending on agent

3’s preference R3, agent 1 or 2 should be allocated the total endowment Ω.
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